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Abstract. We provide a Sandwich Theorem (König (1972)) for positively homogeneous func-
tionals that satisfy additivity only on a restricted domain. Our relaxation of additivity is based
on a binary relation called convex-conic symmetric preorder, whereby additivity is restricted
to all couples of elements that belong to such relation. We then study applications of our
nonlinear Sandwich Theorem, proving extension and envelope representation results. Finally,
we consider some applications to comonotonicity, a key property in decision theory, risk mea-
surement, and the theory of risk sharing.

1. Introduction

The classic version of the Sandwich Theorem yields the existence of a linear functional
in between a given sublinear functional and a given superlinear functional. König (1972)
proved this result as a corollary to the Hahn-Banach extension theorem. In a recent paper,
Amarante (2019) provided an alternative proof, by combining an argument in Fuchssteiner
and Wright (1977) with Pataraia’s Fixed Point Theorem (Pataraia (1997)). In this paper, we
show how the elegant approach developed by Amarante (2019) can be directly implemented
to retrieve nonlinear versions of the Sandwich Theorem, restricting (super/sub)linearity only
to some portions of the domain of the functionals involved. Specifically, we define a binary
relation (denoted by C) that we call the convex-conic symmetric preorder, which is a symmetric
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preorder closed with respect to positive scalar multiplication and addition. Using this preorder,
we provide a Sandwich Theorem (see Theorem 2) for C-(super/sub)linear functionals, i.e.,
functionals that satisfy positive homogeneity and (super/sub)additivity only with respect to
(x, y) ∈ C. We then use this result to prove a Hahn-Banach type extension result (see
Corollary 1) and an envelope representation result (see Corollary 2). We conclude by providing
an illustration of the applicability of our results, with a focus on comonotonic subadditive
functionals.

2. Pataraia’s Theorem and Order-Theoretic Terminology

2.1. Order-Theoretic Terminology. 1 Fix a nonempty set S. By a (binary) relation over
S we mean a set R ⊆ S×S. For all x, y, z ∈ S, we will often write xRy in place of (x, y) ∈ R,
and xRyRz instead of xRy and yRz.

We say that a binary relation R is reflexive if xRx for all x ∈ S, while it is symmetric if
xRy implies yRx, for all x, y ∈ S. If xRy and yRz implies xRz, for all x, y, z ∈ S, then R
is said to be transitive. A reflexive and transitive relation is called a preorder. A preorder
R is a partial order if it is also antisymmetric, that is, if xRy and yRx, then x = y, for all
x, y ∈ S, in which case we say that (S,R) is a partially ordered set (henceforth, poset). A
partial order R is said to be a total order if for all x, y ∈ S, either xRy or yRx, in which case
we say that (S,R) is a totally ordered set. A totally ordered subset of a poset will be referred
to as a chain.

Given a poset (S,R) we say that an element x ∈ S is an R-upper bound of B ⊆ S if xRB,
that is, xRy for all y ∈ B. We say that x is an R-supremum for B ⊆ S if it is an R-upper
bound of B and zRx, for all z ∈ S with zRB. Infima are defined analogously. Given a poset
(S,R), we denote R-suprema and R-infima of B ⊆ S by R-supB and R-inf B, respectively.
When the binary relation is well-understood within the context we will simply write sup and
inf to ease the notation. We say that a poset (S,R) is strictly inductively ordered if every
chain C ⊆ S admits a R-supremum. Given a poset (S,R), we say that a mapping F : S → S
is R-inflationary if F (s)Rs, for all s ∈ S. Given a nonempty set A, a poset (S,R), and two
maps f, g : A → S, we say that fRg if and only if f(a)Rg(a) for all a ∈ A. We will refer
to this order as the R-pointwise order, and, often simply as the pointwise order, when the
underlying relation is clear from the context. It is immediately noticeable that given a poset
(S,R) and a set A, the induced R-pointwise order on SA is also a partial order.

We say that a (real) vector space V is an ordered vector space if it is endowed with a partial
order ≤, such that x ≤ y if and only if x + z ≤ y + z and αx ≤ αy, for all x, y, z ∈ V and
all α ≥ 0.2 In addition, we say that an ordered vector space (V,≤) is a Riesz space if it is
also a lattice, that is, sup {x, y} , inf {x, y} ∈ V , for all x, y ∈ V . A subset B of a Riesz space
(V,≤) is said to be bounded from above if it admits an upper bound in V . Finally, we say that

1We summarize in this subsection all the order-theoretic concepts that we use in this paper. For a compre-
hensive treatment of these notions, we refer the reader to Caspard et al. (2012) and Schröder (2016).

2We will exclusively focus on real vector spaces, which we will henceforth refer to simply as vector spaces.
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a Riesz space (V,≥) is Dedekind-complete if each subset of V which is bounded from above
admits a supremum.3 For any vector space V we will denote by 0V its null element.

2.2. Pataraia’s Fixed Point Theorem. Similarly to Amarante (2019) we will apply the
following version of Pataraia’s Fixed Point Theorem (see also Escardó (2003)).

Theorem 1 (Pataraia). Let (S,R) be a poset and I be the set of all inflationary mappings
on S. If (S,R) is strictly inductively ordered, then I has a common fixed point, that is, there
exists x ∈ S such that f(x) = x, for every f ∈ I.

Proof. Since R is reflexive, Id ∈ I. Moreover, given that all f ∈ I are inflationary, it follows
that fRId. Suppose that C is a chain in I and define f : s 7→ sup

{
f(s) : f ∈ C

}
. Clearly

f ∈ I and hence it is a R-supremum for C with respect to the pointwise order. This yields
that I with the pointwise order is strictly inductively ordered. Therefore, by Zorn’s Lemma,
I has a maximal element, say M ∈ I. Note that for all s ∈ S and all f ∈ I, f(M(s))RM(s).
Thus, since M is maximal and R is antisymmetric, we must have f ◦M = M . Therefore, for
all s ∈ S, M(s) is a common fixed point of I. □

3. Main Results

3.1. Convex-Conic Symmetric Preorders. Given a vector space V , we say that X ⊆ V
is a convex cone if λX ⊆ X for all λ > 0, and X + X ⊆ X. Now let X be a given convex
cone.

Definition 1. A binary relation C ⊆ X × X is a convex-conic symmetric preorder if it is
reflexive, transitive, symmetric, and it satisfies the following properties:

(i) (λx)Cx, for all x ∈ X and λ > 0.

(ii) xCyCz implies (x+ y)Cz, for all x, y, z ∈ X.

The “convex-conic” adjective in the definition of a convex-conic symmetric preorder is due to
the fact that C(x) = {y ∈ X : yCx} is a convex cone. Note that the symmetry property (ii) in
Definition 1 implies that whenever xCyCz, we have (g+ u)Ch, for all g, u, h ∈ {x, y, z}. It is
important to observe that whenever {0V }×X ⊆ C, for some convex-conic symmetric preorder
C on X, it follows that X ×X = C. This is a straightforward consequence of symmetry and
transitivity. Because of property (ii), the same would hold if (−x)Cx for all x ∈ X with
−x ∈ X. For future reference we recollect these simple observations on the following lemma.

Lemma 1. Let X be a convex cone and C ⊆ X ×X a convex-conic symmetric preorder. If
either {0V } ×X ⊆ C or (−x)Cx for all x ∈ X with −x ∈ X, then X ×X = C.

Therefore, at first sight one may worry about how permissive a convex-conic symmetric
preorder is. We show by means of examples (see Section 3.2.2) that it is neither always trivial
nor too restrictive.

3We refer to Aliprantis and Burkinshaw (2006) for a detailed treatment of Riesz spaces.
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3.2. A Sandwich Theorem. Let (V,≤) be a Dedekind-complete Riesz space. Following
Fuchssteiner and Wright (1977), we adjoin to V an element denoted by −∞, and we extend
≤ to V ∪ {−∞} assuming −∞ ≤ V. We say that a map F : X → V ∪ {−∞} is C-sublinear
if

(i) F is positively homogeneous, i.e., F (λx) = λF (x), for all λ > 0 and all x ∈ X.

(ii) F is C-subadditive, i.e., F (x+ y) ≤ F (x) + F (y), for all x, y ∈ X with xCy.

The definitions of C-superlinearity and C-linearity are analogous. We endow V with a
partial order ⪯ such that (V,⪯) is a partially ordered vector space. We say that a function
F : X → V ∪ {−∞} is monotone if x ⪯ y implies F (x) ≤ F (y), for all x, y ∈ X. We adopt
the convention that 0 · (−∞) = 0V. We are now ready to state and prove our main result.

Theorem 2. Suppose that P : X → V ∪ {−∞} is C-superlinear and H : X → V ∪ {−∞} is
C-sublinear and monotone. If P ≤ H, then there exists a C-linear map Q : X → V ∪ {−∞}
such that P ≤ Q ≤ H.

The proof will be provided in several steps. Before going into its details, we provide some
definitions and simple remarks. Let

DPH =
{
Q : X → V ∪ {−∞} : Q is C-superlinear and P ≤ Q ≤ H

}
.

Clearly, P ∈ DPH ̸= ∅. Moreover, DPH is a poset with respect to the pointwise order. If C
is a chain in DPH, then Q : x 7→ sup

{
Q(x) : Q ∈ C

}
is C-superlinear and a supremum of C.

Indeed, for all (x, y) ∈ C and all Q ∈ C,

Q(x+ y) ≥ Q(x+ y) ≥ Q(x) +Q(y).

This implies that Q is C-superlinear. Thus DPH is strictly inductively ordered. Let A : Q 7→
AQ be defined as

AQ(x) = inf
y

{
H(x+ y)−Q(y) : y ∈ C(x) and Q(y) > −∞

}
,

for all x ∈ X and all Q ∈ DPH. Now fix g, x ∈ X and Q ∈ DPH. We also define,

Tg(Q)(x) = sup
h,λ

{
Q(h) + λAQ(g) : h+ λg ⪯ x, h ∈ C(x), λ ≥ 0

}
.

We then obtain the following result.

Lemma 2. The following claims hold:

(1) For all Q ∈ DPH, we have AQ ≥ Q and AQ is C-sublinear.

(2) For all Q ∈ DPH and g ∈ X, we have Tg(Q) is C-superlinear.

(3) For all Q ∈ DPH, we have Q ≤ Tg(Q) ≤ H.

(4) For all Q ∈ DPH and x ∈ X, we have Tx(Q)(x) ≥ AQ(x).
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Proof. (1). Fix Q ∈ DPH and x ∈ X, then

H(x+ y)−Q(y) ≥ Q(x+ y)−Q(y) ≥ Q(x) +Q(y)−Q(y) = Q(x),

for all y ∈ C(x) with Q(y) > −∞. Therefore, AQ ≥ Q. Now suppose that (x1, x2) ∈ C and
y1, y2 ∈ C(x1) with Q(y1) > −∞, Q(y2) > −∞. Notice that since y1, y2 ∈ C(x1) and C is
symmetric and transitive, we have x1Cy1Cy2Cx2. By symmetry and property (ii), it follows
that (

(x1 + y1), (x2 + y2)
)
∈ C.

These observations imply that Q(y1 + y2) ≥ Q(y1) +Q(y2), and hence

H(x1 + x2 + y1 + y2)−Q(y1 + y2) ≤ H(x1 + x2 + y1 + y2)−Q(y1)−Q(y2)

≤ H(x1 + y1)−Q(y1) +H(x2 + y2)−Q(y2).

Therefore, AQ(x1 + x2) ≤ AQ(x1) + AQ(x2). Consequently, for all Q ∈ DPH, AQ is C-
subadditive. Positive homogeneity follows from the positive homogeneity of Q and H, as well
as from the fact that C(x) is a cone.

(2). Fix Q ∈ DPH, g ∈ X, and (x1, x2) ∈ C. Then Tg(Q)(x1+x2) ≥ Tg(Q)(x1)+Tg(Q)(x2).
Indeed, notice that if h1 ∈ C(x1), h2 ∈ C(x2), λ1, λ2 ≥ 0 satisfy

h1 + λ1g ⪯ x1 and h2 + λ2g ⪯ x2,

then h1 + h2 + (λ1 + λ2)g ⪯ x1 + x2. Since x1Cx2, by symmetry, transitivity, and property
(ii) we have that x1Cx2Ch1Ch2 and

(h1 + h2, λ1 + λ2) ∈
{
(h, λ) : h+ λg ⪯ x1 + x2, h ∈ C(x1 + x2), λ ≥ 0

}
.

This, together with the C-superadditivity of Q, yields

Tg(Q)(x1 + x2) = sup
h,λ

{
Q(h) + λAQ(g) : h+ λg ⪯ x1 + x2, h ∈ C(x1 + x2), λ ≥ 0

}
≥ sup

h1,h2,λ1,λ2

{
Q(h1 + h2) + (λ1 + λ2)AQ(g) :

h1 + h2 + (λ1 + λ2)g ⪯ x1 + x2,
h1 ∈ C(x1), h2 ∈ C(x2), λ1, λ2 ≥ 0

}
≥ Q(h1) +Q(h2) + λ1AQ(g) + λ2AQ(g),

for all h1 ∈ C(x1), h2 ∈ C(x2), λ1, λ2 ≥ 0 with h1 + λ1g ⪯ x1 and h2 + λ2g ⪯ x2. Thus,

Tg(Q)(x1 + x2) ≥ Tg(Q)(x1) + Tg(Q)(x2).

This proves that for all Q ∈ DPH and all g ∈ X, the mapping Tg(Q) is C-superadditive.
Positive homogeneity of each Tg(Q) follows from the positive homogeneity of Q and AQ (see
the previous point) and the fact that C(x) is a convex cone.

(3). Fix Q ∈ DPH. It is immediate to see that Tg(Q) ≥ Q (take λ = 0 and h = x, recalling
that C is reflexive). We show that Tg(Q) ≤ H. First notice that, if λ = 0, then for all x ∈ X,
by the monotonicity of H,

sup
h

{
Q(h) + λAQ(g) : h+ λg ⪯ x, h ∈ C(x)

}
= sup

h

{
Q(h) : h ⪯ x, h ∈ C(x)

}
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≤ sup
h

{
H(h) : h ⪯ x, h ∈ C(x)

}
≤ H(x).

Therefore, we can focus on all λ > 0. In particular, we have that for all x ∈ X,

sup
h,λ

{
Q(h) + λAQ(g) : h+ λg ⪯ x, h ∈ C(x), λ > 0

}
= sup

h,λ
inf

y∈C(x),Q(y)>−∞

{
Q(h) + λH(g + y)− λQ(y) : h+ λg ⪯ x, h ∈ C(x), λ > 0

}
= sup

h,λ
inf

y∈C(x),Q(y)>−∞

{
Q(h) +H(λg + λy)−Q(λy) : h+ λg ⪯ x, h ∈ C(x), λ > 0

}
≤ sup

h,λ

{
H(λg + h) : h+ λg ⪯ x, h ∈ C(x), λ > 0

}
= sup

h,λ

{
H(λg + λh) : λh+ λg ⪯ x, h ∈ C(x), λ > 0

}
≤ H(x),

where the last two steps follow from the fact that C(x) is a cone and H is monotone. Thus,
connecting the two observations for λ = 0 and all λ > 0, we have that

Tg(Q)(x) = sup
h,λ

{
Q(h) + λAQ(g) : h+ λg ⪯ x, h ∈ C(x), λ ≥ 0

}
≤ H(x),

for all x ∈ X, and hence Q ≤ Tg(Q) ≤ H.

(4). Let x ∈ X and Q ∈ DPH. Then, since Q is positively homogeneous, we have

Tx(Q)(x) = sup
h,λ

{
Q(h) + λAQ(x) : h+ λx ⪯ x, h ∈ C(x), λ ≥ 0

}
≥ sup

h,n

{
Q(h) +

n− 1

n
AQ(x) : h ⪯ 1

n
x, h ∈ C(x)

}
≥ 1

m
Q (x) +

m− 1

m
AQ(x)

≥ − 1

m

∣∣Q (x)
∣∣+ m− 1

m
AQ(x),

for all m ∈ N. Thus, letting m → ∞, since all Dedekind complete Riesz spaces are Archimedean4

(see Lemma 8.4 in Aliprantis and Border (2006)), we have Tx(Q)(x) ≥ AQ(x) for all x ∈ X. □

This lemma highlights the fact that for all g ∈ X, Tg(·) is a selfmap, as Tg(Q) ∈ DPH for
all Q ∈ DPH. Now we are ready to provide the proof of Theorem 2.

Proof of Theorem 2. By Lemma 2, for all g ∈ X, Tg : DPH → DPH is inflationary. Therefore(
Tg

)
g∈X is a family of inflationary functions. By Theorem 1 the family

(
Tg

)
g∈X has a common

fixed point Q∗ ∈ DPH. Since for all g ∈ X and all Q ∈ DPH we have Tg(Q) ≤ H, it follows
that for all x ∈ X and y ∈ C(x) with Q∗(y) > −∞,

H(x+ y)−Q∗(y) ≥ Tg(Q
∗)(x+ y)−Q∗(y)

≥ Tg(Q
∗)(x) + Tg(Q

∗)(y)− Tg(Q
∗)(y) = Tg(Q

∗)(x).

4We recall that a Riesz space (W,≤) is Archimedean if whenever 0W ≤ nx ≤ y for all n = 1, 2, . . . and some
y ≥ 0W , we have that x = 0W .
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Thus, AQ∗(x) ≥ Tg(Q
∗)(x) = Q∗(x) for all x, g ∈ X. Moreover, by Lemma 2-(4), we have

Tg(Q
∗)(x) = Q∗(x) = Tx(Q

∗)(x) ≥ AQ∗(x), for all x, g ∈ X. Therefore, AQ∗ = Q∗. Since
AQ∗ is C-sublinear and Q∗ is C-superlinear we have that Q∗ is C-linear. To conclude, since
Q∗ ∈ DPH, the claim follows. □

3.2.1. Extension and Envelope Results. By Theorem 2, we derive an analogous version of the
Hahn-Banach Extension Theorem (see for example Theorem 1.25 in Aliprantis and Burkinshaw
(2006)).

Corollary 1. Let H : X → V∪{−∞} be C-sublinear and monotone, and Y ⊆ X be a convex
cone. If ℓ : Y → V ∪ {−∞} is C-linear and satisfies ℓ ≤ H|Y , then there exists a C-linear
map Q : X → V ∪ {−∞} such that Q ≤ H and ℓ ≤ Q|Y .

Proof. Define P : X → V ∪ {−∞} by

P (x) =

{
ℓ(x) x ∈ Y,

−∞ x /∈ Y,

for all x ∈ X. Thus P is C-superadditive. Indeed, suppose that xCy. If x, y ∈ Y , then there
is nothing to prove. If x /∈ Y or y /∈ Y , then P (x) + P (y) = −∞ ≤ P (x+ y). It is immediate
to see that P is positively homogeneous and P ≤ H. Therefore, by Theorem 2, there exists a
C-linear map Q : X → V ∪ {−∞} such that P ≤ Q ≤ H. Therefore, ℓ = P |Y ≤ Q|Y . □

Next, as a direct application of Corollary 1, we provide a general envelope representation
result for C-sublinear and monotone maps. For all x ∈ X, denote by Cx the convex cone
generated by x, that is, Cx = {λx : λ > 0}. Moreover, for all maps H : X → V ∪ {−∞}, let

D(H) =
{
Q : X → V ∪ {−∞} : Q is C-linear and Q ≤ H

}
.

Corollary 2. If H : X → V ∪ {−∞} is C-sublinear and monotone, then

H(x) = sup
Q∈D(H)

Q(x), for all x ∈ X.

Proof. Let x ∈ X and define ℓ over Cx as ℓ(λx) = λH(x), for all λx ∈ Cx with λ > 0. Notice
that ℓ is C-linear and positively homogeneous. Moreover, by positive homogeneity we have
that ℓ(λx) = λH(x) = H(λx) for all λx ∈ Cx. Thus, by Corollary 1, there exists a C-linear
map Q : X → V ∪ {−∞} such that Q ≤ H and ℓ ≤ Q|Cx . Moreover,

H(x) = ℓ(x) ≤ Q(x) ≤ H(x),

and so Q(x) = H(x). Therefore, for all x ∈ X, there exists a C-linear map Qx : X → V∪{−∞}
such that Qx(x) = H(x). This implies that

H(x) = sup
Q∈D(H)

Q(x),

for all x ∈ X. □
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Remark 1. Suppose that V = R and V is a topological vector space. For any map G :

V → [−∞,∞), we define the (effective) domain of G by domG =
{
x ∈ V : G(x) > −∞

}
. We

say that G is proper if domG is nonempty. It is important to note that Corollary 2 could
also be proved by defining each ℓ on the vector space generated by x ∈ V , i.e., span {x},
as ℓ(αx) = αH(x) for all α ∈ R, and then extending each ℓ to be equal to −∞ everywhere
else. In such a case, we would have that each extension Q|domG is continuous. Therefore, in
this setting, Corollary 2 could be restated, adding a further restriction on D(H), namely the
continuity of its elements when restricted to their domains. This approach is similar to the
one adopted by Roth (2000) (e.g., see Corollary 3.3).

3.2.2. Examples.

Example 1. Clearly C = X ×X is a convex-conic symmetric preorder. Under this convex-
conic symmetric preorder C-(super/sub)linearity corresponds to the classic (super/sub)linearity.

Example 2. [Positive homogeneity] Fix x ∈ X and define Dx =
{
(λx, βx) : λ, β > 0

}
.

Then Dx is a convex-conic symmetric preorder. More importantly, define D =
⋃

x∈X Dx.
We now verify that D is also a convex-conic symmetric preorder. Since each Dx ⊆ D, we
have that D is symmetric, reflexive, and satisfies property (i). Fix arbitrarily x, y, z ∈ X and
suppose that xDyDz. Then there exist α, β, λ, γ > 0 and v, w ∈ X such that,

(x, y) = (αv, βv) and (y, z) = (λw, γw).

Therefore, x = αv = α
β
y = λα

β
w, and hence xDz. Consequently, D is transitive. Moreover,

(x+ y, z) =

(
λ

(
α

β
+ 1

)
w, γw

)
,

and thus D satisfies property (ii). Note that any positively homogeneous map F : X → R is
D-linear.

Example 3. [Equivalent measures] Consider a measurable space (Ω,F) and denote by X
the convex cone of countably additive measures µ : F → [0,∞]. For all measures µ ∈ X we
define Nµ =

{
A ∈ F : µ(A) = 0

}
, i.e., the collection of µ-null elements of F . Two measures

µ, ν ∈ X are said to be equivalent, denoted by µ ∼ ν, if Nµ = Nν . It can be verified that ∼
is a convex-conic symmetric preorder. Indeed, letting λ > 0 and µ ∈ X, we have Nλµ = Nµ.
If ν, µ, η ∈ X, ν ∼ µ, and µ ∼ η, then Nµ = Nν = Nη. Thus ∼ is transitive. Symmetry is
also straightforward. To conclude, if ν ∼ µ ∼ η for ν, µ, η ∈ X, we have that ν(A) +µ(A) = 0
for all A ∈ Nη, and the converse holds as well. This yields Nν+µ = Nη, and hence ∼ is a
convex-conic symmetric preorder.

Example 4. [Strict comonotonicity] Let (Ω,F) be a measurable space, and denote by
L0(Ω,F) the space of F -measurable real-valued functions. For all x ∈ L0(Ω,F), denote by
Cx the convex cone generated by x. We say that x, y ∈ L0(Ω,F) are strictly comonotonic if
either (1) x ∈ Cy; or (2) for all ω1 ̸= ω2 in Ω,[

x(ω1)− x(ω2)
] [
y(ω1)− y(ω2)

]
> 0.
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The strict comonotonicity relation, denoted as ↿↾, requires that x ↿↾ y if and only if x, y ∈
L0(Ω,F) are strictly comonotonic. We now verify that ↿↾ is a convex-conic symmetric order.
Clearly, (λx) ↿↾ x, for all λ > 0, as λx ∈ Cx, for all x ∈ L0(Ω,F). Symmetry is immediate,
since if x ∈ Cy, then y ∈ Cx. To show transitivity, fix ω1 ̸= ω2, and suppose that x ↿↾ y and
y ↿↾ z. Then, we have three cases:

(1) If x ∈ Cy and y ∈ Cz, then x ∈ Cz. Thus, x ↿↾ z.

(2) If x ∈ Cy and y /∈ Cz, then[
y(ω1)− y(ω2)

] [
z(ω1)− z(ω2)

]
> 0 and x = λy,

for some λ > 0. This implies that[
x(ω1)− x(ω2)

] [
z(ω1)− z(ω2)

]
> 0.

Thus, x ↿↾ z

(3) If x /∈ Cy and y /∈ Cz, then[
x(ω1)− x(ω2)

] [
y(ω1)− y(ω2)

]
> 0 and

[
y(ω1)− y(ω2)

] [
z(ω1)− z(ω2)

]
> 0.

Therefore, if x(ω1)− x(ω2) > 0, then y(ω1)− y(ω2) > 0, and hence z(ω1)− z(ω2) > 0.
The same reasoning (with inverted signs) applies to the case where x(ω1)− x(ω2) < 0.
Thus x ↿↾ z.

To conclude, fix ω1 ̸= ω2 and suppose that x ↿↾ y ↿↾ z. Then, we have three cases:

(1) If x ∈ Cy and y ∈ Cz, then x+ y ∈ Cz. Thus, (x+ y) ↿↾ z.

(2) If x ∈ Cy and y /∈ Cz, then[
y(ω1)− y(ω2)

] [
z(ω1)− z(ω2)

]
> 0 and x = λy,

for some λ > 0. This implies that[
x(ω1) + y(ω1)− x(ω2)− y(ω2)

] [
z(ω1)− z(ω2)

]
> 0.

Thus, (x+ y) ↿↾ z.

(3) If x /∈ Cy and y /∈ Cz, then[
x(ω1) + y(ω1)− x(ω2)− y(ω2)

] [
z(ω1)− z(ω2)

]
=
[
x(ω1)− x(ω2)

] [
z(ω1)− z(ω2)

]
+
[
y(ω1)− y(ω2)

] [
z(ω1)− z(ω2)

]
> 0.

Thus, (x+ y) ↿↾ z.

Therefore, ↿↾ is a convex-conic symmetric preorder.

Comonotonicity is an important property in in decision theory, risk measurement, and the
theory of risk sharing. A different example of a convex-conic preorder concerns vectors that
are affinely related.

Example 5. [Affinity] Let X be a vector space, and fix e ∈ X. We say that x and y in X
are e-affinely related if there exist α, β ̸= 0 such that x = αy + βe. In particular, we define
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the binary relation Aff as follows

xAffy ⇐⇒ ∃α ̸= 0,∃ β ∈ R : x = αy + βe.

Even if straightforward, we provide the steps proving that Aff is a convex-conic symmetric
preorder. Reflexivity is immediate, as x = x. Passing to symmetry, if xAffy, then there exist
α ̸= 0 and β ∈ R such that x = αy+βe, and hence y = 1

α
−βe, implying that yAffx. Suppose

that xAffy and yAffz. There exist α1, α2 ̸= 0 and β1, β2 ∈ R such that x = α1y + β1e and
y = α2z + β2e. Then

x = α1(α2z + β2e) + β1e = α1α2z + (α1β2 + β1)e,

proving that xAffz, and so Aff is transitive. Now fix x ∈ X, then clearly (λx)Affx for all
λ > 0. In conclusion, if xAffyAffz, then there exist α1, α2 ̸= 0 and β1, β2 ∈ R such that
x = α1y + β1e and y = α2z + β2e. Then

x+ y = α1y + β1e+ α2z + β2e = α1α2z + α1β2e+ β1e+ α2z + β2e

= (α1α2 + α2) z + (α1β2 + β1 + β2) e,

implying that (x+ y)Affz. Thus Aff is a convex-conic symmetric preorder.

To conclude this section we provide some examples of binary relations that are not convex-
conic symmetric preorders. Clearly any irreflexive, asymmetric, or nontransitive binary rela-
tion would work. For instance, probabilistic independence and orthogonality in the context of
inner product spaces are relevant examples.

Example 6. [Inner product spaces] Consider the Hilbert space L2
(
[0, 1] ,B [0, 1] ,Leb

)
,

where B [0, 1] denotes the Borel sigma algebra and Leb the Lebesgue measure. We define the
relation Corr by

fCorrg ⇐⇒
∫
[0,1]

fg dLeb ≥ 0.

It is easy to see that Corr is reflexive and symmetric, and it satisfies conditions (i) and (ii)
of Definition 1, but it fails transitivity. Indeed, consider the functions

f = 1[0,1], g = 1[0, 12 ]
, h = −1[ 12 ,1]

.

Then,

fCorrg and gCorrh, but
∫
[0,1]

fh dLeb = −1

2
< 0.

The next example provides a symmetric preorder that fails property (ii) of Definition 1.

Example 7. Define the function φ : R2 → R by

φ(x, y) =

−1 (x, y) ∈
((

R \ {0}
)
× {0}

)
∪
(
{0} ×

(
R \ {0}

))
0 otherwise.

Consider the binary relation xφy if and only if φ(x, y) ≥ 0. By definition, φ(x, x) = 0 for all
x ∈ R, and so φ is reflexive. Moreover, φ(x, y) = φ(y, x) for all x, y ∈ R, proving that φ is
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symmetric. Additionally, if x, y, z ∈ R with φ(x, y) ≥ 0 and φ(y, z) ≥ 0, then it must be the
case that either x, y, z = 0 or x, y, z ̸= 0, and hence, φ(x, z) = 0. Therefore φ is transitive.
However, letting x, z = 1, y = −1, we obtain

φ(x, y) ≥ 0, φ(y, z) ≥ 0, and φ(x+ y, z) = φ(0, z) < 0.

Thus φ is a symmetric preorder that is not a convex-conic symmetric preorder.

4. Relaxing positive homogeneity

In this section, we weaken the definition of a convex-conic symmetric preorder by removing
property (i) (i.e., positive homogeneity). In particular, we define a new preorder called “sum-
mand symmetric preorder”. Fix a vector space V and a subset X ⊆ V such that X +X ⊆ X.

Definition 2. A binary relation S ⊆ X×X is a summand symmetric preorder if it is reflexive,
transitive, and symmetric, and it satisfies the following property:

xSySz implies (x+ y)Sz, for all x, y, z ∈ X. (1)

Note that in this case S(x) = {y ∈ X : ySx} is closed with respect to the summation of its
elements. Clearly, if X is a convex cone and C is a convex-conic symmetric preorder on X,
then C is also a summand symmetric preorder.

Let (V,≤) be a Dedekind-complete Riesz space. We say that a map F : X → V∪ {−∞} is
S-sublinear if

(i) F is positively integer homogeneous, i.e., F (nx) = nF (x), for all n ∈ N and all x ∈ X.

(ii) F is S-subadditive, i.e., F (x+ y) ≤ F (x) + F (y), for all x, y ∈ X with xSy.

The definitions of S-superlinearity and S-linearity are analogous. We endow V with a
partial order ⪯ such that (V,⪯) is a partially ordered vector space. We say that a map
F : X → V ∪ {−∞} is monotone if x ⪯ y implies F (x) ≤ F (y), for all x, y ∈ X. We adopt
the convention that 0 · (−∞) = 0V. Using the exact same steps as in the proof of Theorem 2,
slightly changing the auxiliary maps, we can retrieve the following version of Theorem 2 for
S-(super/sub)linear functionals.

Theorem 3. Suppose that X is a convex cone, P : X → V ∪ {−∞} is S-superlinear, and
H : X → V ∪ {−∞} is S-sublinear and monotone. If P ≤ H, then there exists an S-linear
map Q : X → V ∪ {−∞} such that P ≤ Q ≤ H.

We omit the proof of this result as it is almost identical to that of Theorem 2. We simply
provide the form of one of the auxiliary maps we used in the previous proofs. In particular,
let

DPH =
{
Q : X → V ∪ {−∞} : Q is S-superlinear and P ≤ Q ≤ H

}
.
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Now, fix g, x ∈ X, and Q ∈ DPH. We also define,

Tg(Q)(x) = sup
h,n

{
Q(h) + nAQ(g) : h+ ng ⪯ x, h ∈ S(x), n ∈ N ∪ {0}

}
.

The auxiliary function AQ is defined as in Section 3.2, using S instead of C.

The analogous of Lemma 2 also holds in this setting. Before providing its proof, we require
the following simple result.

Lemma 3. Suppose that X is a convex cone and S a summand symmetric preorder on X.
Then for all x, y ∈ X,

xSy =⇒ x

n
Sy for all n ∈ N.

Proof. Fix x, y ∈ X with xSy, and choose n ∈ N arbitrarily. Since S is reflexive, it follows
that x/nSx/n. Hence, by property (1), we obtain

x =

 n∑
k=1

x

n

S
x

n
.

Thus, by transitivity and symmetry of S, we have x/nSy. □

Lemma 4. The following claims hold:

(1) For all Q ∈ DPH, we have AQ ≥ Q and AQ is S-sublinear.

(2) For all Q ∈ DPH and g ∈ X, we have Tg(Q) is S-superlinear.

(3) For all Q ∈ DPH, we have Q ≤ Tg(Q) ≤ H.

(4) For all Q ∈ DPH and all x ∈ X, we have Tx(Q)(x) ≥ AQ(x).

Proof. We provide a proof only for points (3) and (4). For the remaining points, the proofs
are identical to those of Lemma 2.

(3). It is immediate to see that Tg(Q) ≥ Q, for all Q ∈ DPH (take n = 0 and h = x). We
show that Tg(Q) ≤ H. In particular, we have that for all x ∈ X,

Tg(Q)(x) = sup
h,n

{
Q(h) + nAQ(g) : h+ ng ⪯ x, h ∈ S(x), n ∈ N ∪ {0}

}
= sup

h,n
inf

y∈S(x),Q(y)>−∞

{
Q(h) + nH(g + y)− nQ(y) : h+ ng ⪯ x, h ∈ S(x), n ∈ N ∪ {0}

}
= sup

h,n
inf

y∈S(x),Q(y)>−∞

{
Q(h) +H(ng + ny)−Q(ny) : h+ ng ⪯ x, h ∈ S(x), n ∈ N ∪ {0}

}
≤ sup

h,n

{
H(ng + h) : h+ ng ⪯ x, h ∈ S(x), n ∈ N ∪ {0}

}
= sup

h,n

{
H(ng + nh) : nh+ ng ⪯ x, h ∈ S(x), n ∈ N ∪ {0}

}
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≤ H(x),

where the fourth inequality follows from setting y = h
n

(which belongs to S(x) by Lemma 3),
while the last two steps follow from the fact that S(x) is closed with respect to addition and
H is monotone. Thus, Q ≤ Tg(Q) ≤ H.

(4). Let x ∈ X, Q ∈ DPH, and m ∈ N. Then, since Q and Tx(Q) are integer positively
homogeneous, we have

Tx(Q)(x) =
Tx(Q)((m+ 1)x)

m+ 1

=
1

m+ 1
sup
h,n

{
Q(h) + nAQ(x) : h+ nx ⪯ (m+ 1)x, h ∈ S(x), n ∈ N ∪ {0}

}
≥ 1

m+ 1
sup
h

{
Q(h) +mAQ(x) : h ⪯ x, h ∈ S(x)

}
≥ 1

m+ 1
Q (x) +

m

m+ 1
AQ(x)

≥ − 1

m+ 1

∣∣Q (x)
∣∣+ m

m+ 1
AQ(x).

Thus, letting m → ∞, since all Dedekind complete Riesz spaces are Archimedean (see Lemma
8.4 in Aliprantis and Border (2006)), we have Tx(Q)(x) ≥ AQ(x), for all x ∈ X. □

The proof of Theorem 3 is now totally analogous to that of Theorem 2, and it is omitted.

5. Applications: Comonotonic Subadditivity

In this section, we apply the previous results to the case of comonotonicity on a specific
measurable space. Suppose that Ω = [0, 1] and F = B [0, 1], the Borel sigma algebra on the
unit interval. Using our results and observations in Example 4, we obtain the following.

Proposition 1. Suppose that H : B(Ω,F) → [−∞,∞) is ∥·∥∞-continuous when restricted to
its domain, monotone, positively homogeneous, and strictly comonotonic subadditive. Then

H(x) = sup
Q∈D(H)

Q(x), for all x ∈ B(Ω,F), (2)

where D(H) is a set of maps from B(Ω,F) to [−∞,∞) that are comonotonic additive and
∥·∥∞-continuous when restricted to their domains. Moreover, H is comonotonic subadditive
on its domain.

Proof. By Corollary 2, Remark 1, and Example 4, it follows that (2) holds, where D(H) is a
convex set of functionals from B(Ω,F) to [−∞,∞) that are strictly comonotonic additive and
∥·∥∞-continuous when restricted to their domains. By Lemma 7 in the Appendix, all elements
of D(H) are comonotonic additive on their domains. Note that Lemma 7 also implies that H
is comonotonic subadditive on its domain. □
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Comonotonic additive functionals play a central role in the theory of decision-making under
ambiguity. Their study was pioneered by Schmeidler (1989), who also provided a representa-
tion of such functionals in terms of Choquet integrals (Schmeidler (1986)). Such functionals
are also relevant for their connection to the theory of risk measurement (e.g., see Denuit et al.
(2005) or Föllmer and Schied (2016)). As for comonotonic subadditivity, less attention has
been devoted to this property. Song and Yan (2006) provided, along with further properties, a
full characterization of comonotonic subadditive functionals as envelopes of Choquet integrals,
and Song and Yan (2009) provided some applications thereof.

Remark 2. Proposition 1 hints towards the possibility of representing continuous, mono-
tone, positively homogeneous, and strictly comonotonic subadditive functionals as suprema
of signed Choquet integrals. Indeed, as shown by Wang et al. (2020), comonotonic additive
and continuous functionals can be represented by Choquet integrals with respect to signed
capacities.

6. Concluding Remarks and An Open Question

Building upon the work of Amarante (2019) and Fuchssteiner and Wright (1977), we pro-
vided a nonlinear version of the classical Sandwich Theorem. We used this result to retrieve
an extension result and an envelope representation result. Our examples show that the type
of nonlinearities that we introduce include some important cases that have been devoted con-
siderable attention in decision theory and mathematical finance. Our approach highlights
the possibility of retrieving Hahn-Banach-type extension results that are widely applied in
functional analysis, theoretical economics, and mathematical finance. We conclude with an
(informal) question and two conjectures:

(O1) To what extent do our results depend on the fact that our maps can take −∞ as a
value? More formally, is it possible to prove the following reformulations of Corollaries
1 and 2?

Conjecture 1. Let H : X → V be C-sublinear and monotone, and let Y ⊆ X be
a convex cone. If ℓ : Y → V is C-linear and satisfies ℓ ≤ H|Y , then there exists a
C-linear Q : X → V such that Q ≤ H and ℓ ≤ Q|Y .

Conjecture 2. If H : X → V is C-sublinear and monotone, then

H(x) = sup
Q∈D̃(H)

Q(x), for all x ∈ X,

where
D̃(H) =

{
Q : X → V

∣∣ Q is C-linear and Q ≤ H
}
.
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Appendix A. Additional Results for Section 5

In this section we report some auxiliary results that we applied in Section 5. In particular,
we provide a partial answer to the following

Question 1. If x, y ∈ B(Ω,F) are comonotonic, then there exist two sequences (xn)n∈N, (yn)n∈N
in B(Ω,F) such that:

(1) xn → x and yn → y;

(2) for all n ∈ N, xn and yn are strictly comonotonic.

It is immediate to see that this does not hold in general measurable spaces. Indeed, take
any Ω ̸= ∅ and let F =

{
∅,Ω

}
. In this measurable space (Ω,F), a function is F -measurable

if and only if it is constant, and therefore there is no injective measurable function. This
observation highlights the fact that Question 1 may admit a positive answer only if we focus
on measurable spaces with a sufficiently sparse sigma-algebra, where this sparsity depends
also on the cardinality of Ω. Providing a full answer to this question is out of the scope of this
paper. Hence, we focus on a special case. However, we first need some auxiliary lemmas.

Lemma 5. Let x, y ∈ B(Ω,F). The following are equivalent

(i) x and y are strictly comonotonic with x /∈ Cy.

(ii) there exist two increasing functions h, g : R → R and an injective z ∈ B(Ω,F) such
that x = h(z), y = g(z), and h, g are injective over z(Ω).

Proof. (i) ⇒ (ii). Since x, y are comonotonic, there exist increasing functions h, g : R → R
and z ∈ B(Ω,F) such that x = h(z) and y = g(z) (see e.g., Denuit et al. (2023), Theorem
2.7). Suppose that z is not injective. Then, there exist ω1, ω2 ∈ Ω such that ω1 ̸= ω2 and
z(ω1) = z(ω2). Thus,[

x(ω1)− x(ω2)
] [

y(ω1)− y(ω2)
]
=
[
h(z(ω1))− h(z(ω2))

] [
y(ω1)− y(ω2)

]
= 0,

contradicting the strict comonotonicity of x, y. Therefore, z must be injective. Now suppose
that h is not injective over z(Ω). Then there exist ω1, ω2 ∈ Ω such that ω1 ̸= ω2, z(ω1) ̸= z(ω2),
and h(z(ω1)) = h(z(ω2)). Since z is injective, we have that ω1 ̸= ω2 and[

x(ω1)− x(ω2)
] [

y(ω1)− y(ω2)
]
=
[
h(z(ω1))− h(z(ω2))

] [
y(ω1)− y(ω2)

]
= 0,

contradicting the strict comonotonicity of x, y. Interchanging h with g and x with y, the same
conclusion holds for g as well.

(ii) ⇒ (i). If ω1 ̸= ω2 and h(z(ω1)) > h(z(ω2)), then we must have that z(ω1) > z(ω2) and
hence g(z(ω1)) > g(z(ω2)). This proves the claim. □

Lemma 6. Suppose that f : [a, b] → R is 1-Lipschitz and increasing. Then, there exists a
sequence of 1-Lipschitz and strictly increasing functions (fn)n∈N from [a, b] to R that converges
uniformly to f .
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Proof. Since f is continuous and increasing, there exist at most countably many disjoint
nondegenerate intervals (In)n∈N over which f is constant, i.e., f(In) = {kn} for all n ∈ N and
some kn ∈ R. Fix ε > 0 and take finitely many points, a = a1 < . . . < ak = b such that
|ai − ai+1| < ε/2 for all i = 1, . . . , k − 1. Suppose that f(ai) = f(aj) for some i < j. Since f
is increasing, we have that

f(ai) = f(ai+1) = . . . = f(aj).

This implies that ai, . . . , aj ∈ In for some n ∈ N. Thus, to find a strictly increasing approxi-
mation we need to modify our vector of points. In particular, we remove all points ai, . . . , aj−1,
and we add one point ãi picked from the set{

x ∈ [ai−1, inf In) : f(x) < f(ai) and
∣∣f(x)− f(ai)

∣∣ < ε

2

}
.

Repeating this operation for all points where the function is constant, within the set {a1, . . . , ak},
we retrieve (in a finite amount of operations) a set {ã1, . . . , ãm} with ã1 = a and ãm = b such
that

f (ã1) < (ã2) < . . . < f(ãm−1) < f(ãm).

Define the function fm : {ã1, . . . , ãm} → R by fm(ãi) = f(ãi), for all i = 1, . . . ,m. By
linear interpolation, we can extend fm to the whole interval [a, b], and we denote such an
extension again by fm. Clearly, fm is strictly increasing, and we now show that it must also
be 1-Lipschitz. To this end, notice that the slope of fm|[ãi,ãi+1] satisfies

f(ãi+1)− f(ãi)

ãi+1 − ãi
≤ 1,

for all i = 1, . . . , k−1, where the inequality follows from the fact that f is 1-Lipschitz, ãi+1 > ãi,
and f is increasing. This implies that fm|[ãi,ãi+1] is 1-Lipschitz for all i = 1, . . . , k−1. If x > y,

then x ∈ (ãi, ãi+1] and y ∈
[
ãj, ãj+1

]
for some i > j. This implies that∣∣fm(x)− fm(y)

∣∣ = fm(x)− fm(y)

= fm(x)− fm(ãi) + fm(ãi)− fm(ãi−1) + . . .+ fm(ãj+1)− fm(ãj) + fm(ãj)− fm(y)

≤ x− ãi + ãi + . . .+ ãj+1 − ãj + ãj − y = |x− y| .

Thus fm is 1-Lipschitz. Now we prove that fm is ε-close to f . For all x ∈ [ãi−1, ãi] and
i = 2, . . . ,m we have∣∣f(x)− fm(x)

∣∣ ≤ ∣∣f(x)− f(ãi−1)
∣∣+ ∣∣f(ãi−1)− fm(x)

∣∣
≤ ε

2
+
∣∣fm(ãi−1)− fm(ãi)

∣∣
=

ε

2
+
∣∣f(ãi−1)− f(ãi)

∣∣
< ε.

Since x was chosen arbitrarily, it follows that ∥f − fm∥∞ → 0. Therefore, there exists a
sequence of 1-Lipschitz and strictly increasing functions (fn)n∈N converging uniformly to f . □
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Now suppose that Ω = [0, 1] and F = B [0, 1] is the Borel sigma-algebra.5

Lemma 7. If x, y ∈ B(Ω,F) are comonotonic, then there exist two sequences (xn)n∈N, (yn)n∈N
in B(Ω,F) such that:

(1) xn
∥·∥∞−−→ x and yn

∥·∥∞−−→ y;

(2) For all n ∈ N, xn and yn are strictly comonotonic with xn /∈ Cyn.

Proof. Since x, y ∈ B(Ω,F) are comonotonic, there exist two increasing 1-Lipschitz functions
h, g : R → R and an z ∈ B(Ω,F) such that x = h(z), y = g(z) (Denuit et al. (2023), Theorem
2.7). We first prove a claim that will yield the result.

Claim. There exists a sequence of injective and measurable functions converging to z.

Proof of the claim. Let (sn)n∈N ∈ B(Ω,F)N be a sequence of step functions converging uni-
formly to z. Each sn can be uniquely identified with a partition (Ini )

kn
i=1 of nondegenerate

subintervals of Ω, and a vector of values
(
an1 , . . . , a

n
kn

)
, for some kn ∈ N. For all n ∈ N and

ε > 0, we can define the following,

sεn(ω) = 2ε

(
ω − inf Ini

sup Ini − inf Ini

)
+ ani − ε,

for all ω ∈ Ini and all i = 1, . . . , kn. Clearly sεn is an injective Borel measurable function, for
all ε > 0 and all n ∈ N. Intuitively, we are simply rotating slightly the constant “lines” of each
sn over all their partitions. Moreover, note that

∥sεn − sn∥∞ ≤ ε,

for all n ∈ N and ε > 0. This implies that
(
s
1/n
n

)
n∈N

converges uniformly to z. Indeed,∥∥∥z − s1/nn

∥∥∥
∞

≤ ∥z − sn∥∞ +
∥∥∥sn − s1/nn

∥∥∥
∞

≤ ∥z − sn∥∞ +
1

n
→ 0.

Thus, we found a sequence of injective and measurable functions converging uniformly to
z. □

Given that z is bounded, there exist m,M ∈ R such that z(Ω) ⊆ (m,M). Since
(
s
1/n
n

)
n∈N

converges uniformly to z, there exists some N ∈ N sufficiently large so that

s1/nn (Ω) ⊆ [m,M ] ,

for all n ≥ N . Using a slight abuse of notation, we will now identify by
(
s
1/n
n

)
n∈N

its

subsequence
(
s
1/nk
nk

)
k∈N

with n1 = N , n2 = N + 1 and so on. By Lemma 6, there exist two
sequences of 1-Lipschitz and strictly increasing functions (hn)n∈N and (gn)n∈N from [m,M ] to

5All the results provided in this section would hold for any closed interval I ⊆ R.
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R converging uniformly to h and g. For all n ∈ N, let xn = hn

(
s
1/n
n

)
and yn = gn

(
s
1/n
n

)
. Fix

n ∈ N arbitrarily. If ω1 ̸= ω2, then s
1/n
n (ω1) ̸= s

1/n
n (ω2) since s

1/n
n is injective, say without loss

of generality that s
1/n
n (ω1) > s

1/n
n (ω2). Since hn and gn are both strictly increasing we have

that [
xn(ω1)− xn(ω2)

] [
yn(ω1)− yn(ω2)

]
=

[
hn

(
s1/nn

)
(ω1)− hn

(
s1/nn

)
(ω2)

] [
gn

(
s1/nn

)
(ω1)− gn

(
s1/nn

)
(ω2)

]
> 0.

Thus, xn, yn are strictly comonotonic. Fix n ∈ N arbitrarily. Since hn is 1-Lipschitz, we have∥∥∥∥h(z)− hn

(
s1/nn

)∥∥∥∥
∞

≤
∥∥h(z)− hn (z)

∥∥
∞ +

∥∥∥∥hn(z)− hn

(
s1/nn

)∥∥∥∥
∞

=
∥∥h(z)− hn (z)

∥∥
∞ + sup

ω∈Ω

∣∣∣∣hn(z(ω))− hn

(
s1/nn (ω)

)∣∣∣∣
≤
∥∥h(z)− hn (z)

∥∥
∞ + sup

ω∈Ω

∣∣∣z(ω)− s1/nn (ω)
∣∣∣→ 0.

Thus (xn)n∈N converges uniformly to x. The same holds for (yn)n∈N, and the proof is totally
analogous. □
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