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1 Introduction

1.1 Motivation and Background

The last 30 years have seen an extensive development of non-Bayesian theories
of choice under uncertainty. Starting with the seminal work of Schmeidler (1989)
and Gilboa and Schmeidler (1989), economists have developed models that depart
from the standard subjective expected utility model. The study of such departures
is motivated by different types of considerations. For one, experimental evidence
such as Ellsberg’s paradox has suggested the Bayesian approach is not consistent
with observed behavior. A second type of concern finds the Bayesian approach
to be inadequate from a normative standpoint. As suggested by the literature on
ambiguity and ambiguity aversion, a decision maker may find it challenging to
specify a unique probability when only vague or fragmentary information is avail-
able.1 Analogous concerns have emerged in other fields of economics. A notable
example is Hansen and Sargent’s work in macroeconomics. In a series of influen-
tial papers (e.g., Hansen and Sargent (2001)) they considered decision makers who
view their model (i.e., a probability distribution) as an approximation and want to
behave robustly to possible perturbations of this approximating model.

These concerns may be addressed by appealing to an informal continuity prin-
ciple: even if the probabilities are not correctly specified, as long as the approx-
imation error is small enough, then it should cause only a small variation in the
final conclusions. This is a form of robustness to small specification errors of the
original prior. Unfortunately, such a robustness does not always hold. The fol-
lowing example formalizes the idea that the predictions of a Bayesian model can
change substantially by considering arbitrarily small perturbations of an agent’s
belief. Consider the following common Bayesian decision problem: an agent has
to take an action a ∈ R and once a state ω ∈ Ω ⊆ R is realized the agent gets
utility u(ω, a) = −(ω − a)2. Suppose that an agent wants to maximize expected
utility and has a belief µ over states such that Eµω < ∞ and Eµω2 < ∞. For
any positive integer n, let µn denote perturbation of the original belief µ given
by µn = (1− 1

n )µ + 1
n δn2 , where δn2 denotes the degenerate distribution that as-

signs probability one to n2. Note that the sequence of distribution functions (µn)n

1See Gilboa and Marinacci (2016) for a review of the literature on ambiguity aversion.
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converges pointwise to that of µ; so that, for example, (µn)n converges weakly to
µ. Now observe that the action a∗n that maximizes Eµn u(ω, a) is given by a∗n =

Eµn ω = (1− 1
n )Eµω + 1

n n2 = (1− 1
n )Eµω + n → ∞. Moreover, it is easy to check

that supa∈R Eµn u(ω, a) → ∞. In other words, a very small perturbation of the
initial belief might lead the agent to extremely different conclusions.2

1.2 Contributions

In this paper, I formulate robustness as a form of continuity. The central concept
that I consider is a form of continuity of the value of a decision problem under
uncertainty. I adopt a choice-theoretic approach, i.e., I connect this notion of ro-
bustness to observable choice behavior. To illustrate, consider the perspective of
an analyst who observes choices over acts made by an agent. The major difficulty
with relating this type of robustness to choice behavior is that the analyst would
have to be able to observe the agent’s choices in the counterfactual scenario in
which his belief is perturbed. This is not feasible in an observational study. Even
in an experimental setting, reliably inducing perturbed beliefs may be challenging.
Nonetheless, it is reasonable to assume that the analyst can change or perturb the
acts available to the agent. The approach I propose is to look at choice behavior
over “perturbed” decision problems, i.e., decision problems in which the avail-
able acts are perturbed in a precise fashion. Following this reasoning, I provide
a behavioral axiom that consists in stable (or convergent) choice behavior over a
sequence of perturbed decision problems. The main result, Theorem 2, states that
robustness is characterized by this form of stable choice. Therefore, one can think
of robustness equivalently as a form of robust choice behavior over perturbed de-
cision problems.

I then study how to quantify prior robustness by constructing a measure draw-
ing from methods in functional differentiation. For an agent with utility u, prior P
and optimal act f ∗ robustness is quantified by

sup
Q∈C

∫
u( f ∗)dQ−

∫
u( f ∗)dP, (1)

where C is a set of probability measures that represent perturbations to the prior
P. The second main set of results, Theorem 3 and Proposition 2, provides a foun-

2This example is due to Kadane and Chuang (1978)
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dation for such a measure. This measure can be used to address two different
types of questions. First, it can be used to assess how sensitive the predictions
of a model are to the choice of the initial probability. For instance, it can be ap-
plied to Bayesian statistical methods to compare the robustness of different priors.
Another way to interpret this result is that the more heavy-tailed the distribution
is, the less volatile social welfare will be to the misspecification of the probability.
From a decision-theoretic perspective, this measure can be used to compare atti-
tudes toward robustness for different agents. Consider two agents with the same
utility but different beliefs. I show that an agent is associated with a lower mea-
sure of robustness than another agent if and only if the monetary value he attaches
to having his optimal act perturbed is lower than that of the other agent. In other
words, a “more robust” agent will be less affected by perturbations of the optimal
act.

I provide two applications to illustrate the importance of this measure of ro-
bustness: a climate mitigation problem and a portfolio choice problem. An exten-
sive literature (e.g., see Weitzman (2011) or Ibragimov et al. (2015)) has suggested
that adopting “fat” or “heavy” tailed distributions is a way to build models with
more robust conclusions. For example, fat tailed distributions such as the Student’s
t-distribution are typically considered a robust alternative to the use of normal dis-
tributions. I consider a simple climate mitigation model, where an agent has to
choose the consumption of a good that can produce (an uncertain) damage in the
future. A desire for robustness may emerge from experts’ disagreement about the
distribution of future damage.3 I show that the measure of robustness I develop
ranks as more robust distributions with heavier tails. One way to interpret this
result is that with heavier tails, social utility will be less volatile to misspecification
of the prior probability. Further, in a simple portfolio allocation problem, I show
that if the utility function incorporates explicitly a distaste for fat tails, modeling
returns of a risky asset with a Student’s t-distribution are ranked as more robust
than normally distributed returns. Hence, this measure of robustness formalizes
the intuition in the literature that connects heavy tailed distributions with robust-
ness. As I discuss, heavy tails can be seen as emerging from model uncertainty,

3In the case of climate change, there is substantial disagreement among experts on the param-
eter of climate sensitivity, i.e., by how much global average temperatures increase as a result of
increased greenhouse gas levels. See Meinshausen et al. (2009).
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thus showing—against the common claim in the decision-theoretic literature—that
the Bayesian approach can be properly used to deal with model uncertainty.

1.3 Related literature

Modeling robustness in a Bayesian framework is an old topic of interest. For in-
stance, Savage et al. (1963) introduce the so called principle of “stable estimation.”
In a Bayesian statistical problem, they propose conditions such that the likelihood
function dominates the prior distribution. Thus, robustness is modeled by the fact
that the prior does not have a strong influence on the posterior. Fishburn et al.
(1968) describe a variety of methods that may be used to evaluate the robustness
of probabilities. The main approach they consider is to evaluate how much a prob-
ability that guarantees a unique optimal solution has to be perturbed to change the
optimum. An extension of their work is given by Pierce and Folks (1969). Demp-
ster (1975) contains a very interesting discussion of conceptual issues related to
robustness from a subjectivist perspective.

In game theory, it is well known that game-theoretic predictions can be highly
sensitive to assumptions about players’ higher-order beliefs. Rubinstein’s (1989)
seminal paper shows that a strict Nash equilibrium of a game might fail to be ratio-
nalizable under a slight perturbation of hierarchies of beliefs. This paper spawned
a large literature that tried to establish whether in some cases robustness can be
preserved. From a theoretical perspective, this literature is close to my approach
since it studies robustness of game-theoretic predictions with respect to a fixed
topology. It is important to note that one could adopt an alternative approach sug-
gested by Dekel et al. (2006) which constructs the coarsest metric topology that
preserves a form of robustness.

In the literature on Bayesian statistics, the work of Kadane and Chuang (1978)
is very close to my approach. Of particular importance are Good’s writings on
robustness (see for example Good (1971)) which had a large impact on the subse-
quent statistical literature. Some of his insights were eventually developed in the
literature on Bayesian robustness (see Berger et al. (2000) for a review). This litera-
ture studies how much Bayesian statistical methods depend on uncertainty about
the precise details of the analysis, typically those given by the prior distribution.
Section 7 contains an in depth discussion of the relations between my work and
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this literature. This paper is also related to the frequentist literature on robustness
that started with the seminal work of Huber et al. (1964). In particular, there are
tight connections with the work of Hampel (Hampel (1971), Hampel (1974)). The
main differences between my work and the literature in statistics is that I adopt a
choice-theoretic approach.

1.4 Structure

Section 2 introduces the formal decision-theoretic framework. Section 3 introduces
the notion of robustness, along with its behavioral characterization. Section 4 stud-
ies how to quantify the robustness for a given decision problem. Section 5 studies
applications, and Section 6 offers concluding remarks. The proofs are in the Ap-
pendix, while the Supplemental Appendix contains extensions and preliminary
technical results.

2 Preliminaries

2.1 Choice setting

I adopt the standard decision theoretic set-up à la Savage with additional assump-
tions on the state space and the set of consequences. The set S represents the states
of the world and Σ = {A, E, . . .} is a σ-algebra of subsets of S called events. I
assume S is a Polish space and that Σ is the Borel σ-algebra. ∆ denotes the set of
countably additive probability measures µ : Σ → [0, 1], endowed with the weak∗

topology. ca(Σ) is the set of all countably additive signed measures defined on Σ.
Call µ ∈ ∆ non-atomic if for every A ∈ Σ there is B ∈ Σ such that B ⊆ A and
µ(A) > µ(B) > 0. Given a sequence (µn)∞

n=1 in ∆, µn → µ denotes convergence in
the weak∗ topology.

X = {x, y, z, . . .} is the set of consequences. Assume X is a normed space with
norm ‖·‖. The main case of interest is when the set of consequences is a Euclidean
space, i.e. X = Rn. Cb(S, X) ⊆ XS denotes the set of continuous and bounded
functions. For example, if S = [0, 1] then Cb([0, 1], R) ≡ C([0, 1]) is the set of
continuous real valued functions defined on the interval [0, 1].
F = { f , g, h . . .} ⊆ XS is the set of acts. As usual, for x ∈ X, I define x ∈ F to
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be the constant act such that x(s) = x for all s ∈ S. For any f , g ∈ F and event
A ∈ Σ denote with f Ag the act h such that h(s) = f (s) for s ∈ A and h(s) = g(s)
for s /∈ A. A simple act is an act with finite support. Because X is a normed vector
space, any simple act f can be written as f = ∑n

i=1 1Ai xi, where 1Ai is the indicator
function of the set Ai, (Ai)

n
i=1 is a Σ-measurable partition of S and x1, . . . , xn are

the elements of the range of f .
The starting point of the analysis is a binary relation < on the set F that repre-

sents a decision maker’s (DM) preferences over acts. Given acts f , g I write f > g
if f (s) < g(s) for every s ∈ S. An act f ∈ F is measurable if {s ∈ S : f (s) < x} ∈ Σ
and {s ∈ S : x < f (s)} ∈ Σ for every x ∈ X. I restrict the attention to bounded and
measurable acts. In other words,

F = { f ∈ XS : f is measurable and y 6 f 6 x for some x, y ∈ X}.

A functional V : F → R represents < if

V( f ) ≥ V(g) ⇐⇒ f < g,

for every f , g ∈ F .
For g : S→ R and a measure µ such that g is µ-integrable, let∫

gdµ,

denote the standard Lebesgue integral with respect to µ. If ν, µ are two measures
then

∫
gd(µ + ν) denotes the integral with respect to the measure A 7→ µ(A) +

ν(A) ∀A ∈ Σ.
Given a measurable space (Ω,A), ∆(Ω) denotes the set of all countably addi-

tive probability measures defined on A. Given P, Q ∈ ∆(Ω), write Q � P if and
only if A ∈ A, P(A) = 0 =⇒ Q(A) = 0. In some examples and applications, the
integral of a function g : Ω → R with respect to a probability measure µ will be
denoted by Eµg(ω).

2.2 Basic preference representation

The DM’s preference relation< overF is assumed to be represented by V : F → R

satisfying

V( f ) =
∫

u( f )dP ∀ f ∈ F , (2)
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where P ∈ ∆ is non-atomic and u : X → R is continuous. The Supplemental Ap-
pendix provides an axiomatization of preferences with such a representation. The
axioms are based on Kopylov’s (2010) characterization of Savage’s subjective ex-
pected utility with countably additive probabilities. The choice-theoretic analysis
in this paper will focus on state-independent utility. The Supplemental Appendix
extends results in the next section to allow for state-dependent utility.

3 Robustness

3.1 Decision problems and robustness

A decision problem is a (non-empty) set F ⊆ F of acts. Acts in F are the available
acts that the DM can choose. Since < satisfies Savage’s axioms, the DM faces the
usual optimization problem

sup
f∈F

∫
u( f )dP. (3)

Many economic models involve an optimization problem like (3). I will consider
two main examples.

Example 1 (Portfolio choice). In the standard portfolio choice problem, there are
two assets available: a risk free one with certain return r f and a risky one with
uncertain return described by the random variable r : Ω → R defined on a mea-
surable space (Ω,A). The investor has to allocate of his wealth (which I normalize
to 1) between the two assets. He cares about his terminal wealth w ∈ R and has
utility v(w). The set of available acts can be written as

A = {ar + (1− a)r f : a ∈ [0, 1]},

where a denotes the fraction of wealth invested in the risky asset. The problem
faced by the investor is

max
r′∈A

Epv(r′(ω)).

where p ∈ ∆(Ω). Thus here we have X = R, S = Ω, u = v, P = p and F = A.

Example 2 (Climate mitigation). Consider a simple economic model of climate
mitigation analogous to that studied in Gollier et al. (2000) (see also Bommier et al.
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(2021)). There are two periods where the only source of utility comes from the
consumption of a good ct, t = 1, 2. Consuming the good at t = 1 is free and certain
but it may reduce the (uncertain) value of consumption at time t = 2 through
environmental damage. More formally, the decision maker has to choose the level
of climate abatement a ∈ R+ which will result in reduced consumption at t = 1,
i.e. c1(a) = c̄ − r(a), where r : R+ → R is a function that describes the cost of
the abatement policy. At the same time, a higher level of abatement policy will
(potentially) increase the future level of consumption c2(a, s) depending on the
realization of a state s ∈ R. The optimization problem is therefore given by:

V(P) = max
a∈R+

v (w1 − r(a)) + βEPv (c2(a, ·)) ,

where β ∈ (0, 1] reflects time preference and P ∈ ∆(R) is the decision maker belief
about the state s ∈ S. The the set of available acts can be written as

A = {(x1, x2) : S→ R2 : x1 = w1 − c(a), x2 = c2(a, ·), a ∈ R+}.

As the previous examples illustrate, it is common to make regularity assump-
tions on the set of feasible acts. To study robustness from a choice-theoretic per-
spective, I am going to make the following assumptions on F.

Assumption 1 (Continuous acts). F ⊆ Cb(S, X)

Assumption 2 (Optimal act). There exists f ∗ ∈ F such that f ∗ < f for every f ∈ F.

A few comments are in order. Assumption 1 is a standard regularity assump-
tion. While this assumption excludes simple acts, the latter can be arbitrarily ap-
proximated by the former.4 Using continuous acts substantially eases the exposi-
tion; however, it is possible to allow for non-continuous acts. The Supplemental
Appendix (see subsection 7.3.1) extends results in this section to the case in which
F contains only simple acts. Further, this assumption guarantees that we can en-
dow F with the sup-norm topology, i.e., the distance defined by

‖ f − g‖∞ = sup
s∈S
‖ f (s)− g(s)‖.

4Formally, this fact is known as Lusin’s Theorem; see for example Theorem 12.8 in Aliprantis
and Border (2006).
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Assumption 2 simply states that the optimization problem is “interesting” in the
sense that it admits a solution.

In general, for a decision problem F′ ⊆ F , any constant ε > 0 and expected
utility representation (u, P) of preferences, we will be interested in the set of all
ε-optimal acts

Cu,P,ε(F′) =
{

f ∈ F′ :
∫

u( f )dP ≥ sup
g∈F′

∫
u(g)dP− ε

}
,

while the set of optimal acts is denoted with Cu,P(F′).
Two notions of robustness are studied in this paper. The first is a form of con-

tinuity of the value of the decision problem as a function of the DM’s belief. The
second notion requires a form of continuity of the optimal solution. Recall that
given a sequence (Pn)∞

n=1, Pn → P means that the sequence converges to P in the
weak∗ topology.

Definition 1. Fix a decision problem F and consider the preference < with repre-
sentation (u, P). Say that < is robust if for every sequence (Pn)∞

n=1 in ∆ such that
Pn → P it holds

sup
f∈F

∫
u( f )dPn → max

f∈F

∫
u( f )dP,

as n→ ∞.
Say that < is strongly robust if for every sequence of positive numbers (εn)∞

n=1

such that εn → 0, every sequence of acts ( fn)∞
n=1 that satisfies fn ∈ Cu,Pn,εn(F)

converges to an optimal act f ∗ ∈ Cu,P(F).5

Remark 1. Strong robustness is indeed stronger than robustness. See Theorem 6
in the Appendix.

Remark 2. Both robustness properties are independent of the normalization of the
Bernoulli utility u. It follows that robustness is a property of the preference < and
holds or does not hold for every expected utility representation.

5It is important to observe that since for some x it holds x > f ∗, we obtain x > f for every f ∈ F.
This implies that

sup
f∈F

∫
u( f )dPn ≤ u(x) < ∞,

for every n. Thus the sequence (sup f∈F
∫

u( f )dPn)∞
n=1 is effectively a sequence in R.
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The main reason I consider robustness with respect to the weak∗ topology is
that it is a natural topology to consider for an initial analysis. Indeed, as the name
suggests it is weaker than most other topologies on probability measures that are
typically considered. As a consequence, this notion of robustness will be very
demanding. In particular, it will be more demanding than any other notion of
robustness that uses a topology stronger than the weak∗.

An important feature of this notion of robustness is that it depends not only on
the prior probability but also on the choice set F and the utility u. As will be shown
in the main theorem of this section, robustness is characterized by a form of robust
choice behavior over sequences of perturbed decision problems. Therefore, since
more regular decision problems are harder to perturb, regularity properties of the
decision problem will be important to guarantee robustness. For example, a key
property related to robustness is compactness of the choice set F.

Example 3 (Portfolio choice continued). Suppose that Ω is a metric space and r :
Ω → R is a continuous bounded function. For example, Ω = [0, 1], r(ω) = ω and
P has a beta distribution (so that r is also distributed as a beta). Then it is easy to
show that the set

A = {ar + (1− a)r f : a ∈ [0, 1]} ⊆ C([0, 1]),

is a compact subset of C([0, 1]) in the sup-norm topology, by a direct application
of the Arzelà-Ascoli theorem. Suppose that v : R → R is continuous. Given the
structure of the feasible set A, it is possible to show that the objective function is
continuous in both the probability and the choice variable.

Thus, by the maximum theorem (see for example p. 306 in Ok (2011)) robust-
ness is satisfied. On the other hand, in general strong robustness will not be satis-
fied unless there is a unique optimal solution. For the general decision problem in
(3), the following result holds.

Proposition 1. Suppose that F is a compact subset of Cb(S, X). Then robustness is satis-
fied. Moreover, strong robustness is satisfied whenever there is a unique optimal act.

Proof sketch. For this result however it is not possible to use the maximum theo-
rem. This is due to the fact that the objective function is not guaranteed to be
jointly continuous in both its arguments. However, part of the proof of Theorem 2
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can be used to show that in this example robustness is satisfied. The full proof is
elaborated in the Appendix.

3.2 Perturbed decision problems

The main question that I study is whether it is possible to obtain a behavioral char-
acterization of these two notions of robustness. The challenge with this question
is that it requires observing the choices made by the DM under alternative beliefs.
Unfortunately, such a counterfactual is not available. The main idea that I propose
is that one can look at the behavior of the DM when the decision problem itself is
“perturbed” in a precise fashion.

Given an act f , I will consider “perturbations” of the kind f Ex for some event
E ∈ Σ and outcome x ∈ X. More precisely, given a sequence (Pn)∞

n=1 such that
Pn → P, consider the decision problem Fn defined by

Fn =

{
f Ex : f ∈ F, E ∈ Σ, x ∈ X,

∫
u( f Ex)dP =

∫
u( f )dPn

}
.

Fn contains all the perturbations of the acts in F that have expected utility “as if”
the agent’s belief was Pn. Because the sets (Fn)n contain perturbations of the acts in
F, they will not necessarily satisfy Assumptions 1 and 2. The first result describes
an important class of such perturbations, and in particular shows that Fn 6= ∅ for
every n.

Theorem 1. For every f ∈ F and Pn → P, there exist A f ,n and x f ,n such that∫
u( f A f ,nx f ,n)dP =

∫
u( f )dPn ∀n.

Moreover, P(A f ,n)→ 1 and either x f ,n = x f or x f ,n = y f , where x f > f > y f .

Proof sketch. The proof makes key use of the fact that P is both non-atomic and
countably additive. These two joint assumptions not only imply that P is convex-
ranged, but also the stronger statement that there exists a collection (Aα)α∈[0,1] of
measurable sets, such that γ ≤ β =⇒ Aγ ⊆ Aβ and P(Aα) = α for every
α ∈ [0, 1]. See the Appendix for the full proof.

Thus, not only are the sets Fn non-empty but for each f ∈ F there is some
f Ex ∈ Fn that for large n is “close” to the act f . Indeed, it is easy to show that∫

‖ f A f ,nx f ,n − f ‖dP→ 0 as n→ ∞.
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In this sense, for large n the perturbed act f A f ,nx f ,n can be considered a small
alteration of the act f . Observe that the acts in (Fn)∞

n=1 constructed with Theorem
1 are all that is needed for the results in this paper.

Thanks to this result, it is possible to understand the choice behavior of the DM
in the counterfactual scenario in which he had a different belief. Thus, given any
Pn → P, it is possible to understand the DM’s behavior as if his belief was Pn by
looking at choices over the set Fn. The next key property captures the idea of stable
(or convergent) choice over the sequence of perturbed decision problems (Fn)∞

n=1.

Definition 2. Consider < with representation (u, P) and a decision problem F ⊆
F . Let εn → 0. A sequence (gn)∞

n=1 = ( fnEnxn)∞
n=1 ∈ ∏∞

n=1 Cu,P,εn(Fn) is stable if
for some optimal act f ∗ ∈ Cu,P(F) the following two conditions hold:

(i) There is a subsequence ( fnk)k of ( fn)∞
n=1 such that fnk → f ∗;

(ii)
∫
‖gnk − f ∗‖dP→ 0.

Stability requires a strong type of convergence for the sequence (gnk)k = ( fnk Enk xnk)k.
First, the sequence of acts ( fnk)k that are perturbed has to convergence to an op-
timal act f ∗ according to the sup-norm metric. Moreover, the sequence (gnk)k =

( fnk Enk xnk)k has to converge to the optimal act f ∗. To have intuition for condition
(ii), note it requires the usual convergence in mean of the sequence (gnk)k to f ∗.
Thus, choice behavior is stable or robust in the sense that choices for the perturbed
decision problems are similar to that of the original one. The main axiom of this
paper requires stable behavior over sequences of perturbed decision problems.

Axiom (Preference for stability). Consider < with representation (u, P) and fix a de-
cision problem F ⊆ F . < has a preference for stability if for every (Fn)∞

n=1 there exists
εn → 0 and a sequence (gn)∞

n=1 = ( fnEnxn)∞
n=1 ∈ Cu,P,εn(Fn) that is stable for some

optimal act f ∗.

In words, preference for stability requires stable choice behavior over any se-
quence of perturbed decision problems. The main result of the paper characterizes
robustness in terms of preference for stability.

Theorem 2. < is robust if and only if it has preference for stability.
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Proof sketch. To proof of this theorem relies extensively on the theory of Γ-convergence
(often called epiconvergence/hypoconvergence; see, e.g., Dal Maso (1993)). Γ-
convergence is a notion of convergence for functionals germane to the study of
optimization problems and their perturbations. The first step of the proof consists
in showing that for any Pn → P the sequence of functionals Vn( f ) =

∫
u( f )dPn

Γ-converges to V( f ) =
∫

u( f )dP. For this part of the proof, it is key to assume that
S is a Polish space. Then, I combine the proof of Theorem 1 with an existing char-
acterization of convergence of suprema under Γ-convergence to deliver the final
result. See the Appendix for details.6

As a corollary, an analogous characterization can be obtained for strong robust-
ness.

Corollary 1. < is strongly robust if and only if for εn → 0 and every sequence ( fn)∞
n=1

such that fn ∈ Cu,Pn,εn(F) there exists a sequence (gn)∞
n=1 = ( fnEnxn)∞

n=1 such that
gn ∈ Cu,P,εn(Fn) and for a subsequence (gnk)

∞
k=1 satisfies∫

‖gnk − f ∗‖dP→ 0.

Conceptually, these two results connect the notions in Definition 1 to a property
of choice that is potentially testable. Clearly, an axiom involving convergence of
choices is not directly “operational,” since it involves an infinite sequence of acts.
Nonetheless, these results do suggest that attitudes toward robustness are related
to convergence of choices under small perturbations of the available acts. The fact
that the axiom involves convergence of a sequence of acts does not necessarily
preclude testability. For instance, the experimental literature that studies learning
in games (e.g., Hyndman et al. (2012)) has studied convergence of actions in sit-
uations of repeated interaction. Typically, convergence is assumed whenever the
same type of choice is observed for a repeated period of time. Therefore, one could
understand whether robustness fails by looking at whether or not choices over a
sequence of perturbed decision problems converge to the choice for the original
problem. To clarify this point, consider the following example.

Example 3. Consider the following special case of example 1. Here Ω = [0, 1], P
is the Lebesgue measure, and u(x) = log(x). Assume that the riskless asset pays

6Notably, some of the assumptions used to prove this result can be relaxed. For instance, as
shown in the Supplemental Appendix (section 7.3.3), continuity of the function u is not needed.
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1
3 for sure. Given these assumptions, the optimal allocation of wealth is to allocate
α ≈ 71.63% of wealth to the risky asset. Consider the perturbation of the prior P
given by Pn = 1

n δ1 + (1− 1
n )P, where δ1 is the distribution such that δ1({1}) = 1.

In words, this sequence of perturbations takes into account the possibility that the
risky asset might involve no risk and pays 1 for sure. For every allocation of wealth
α, it is possible to find a perturbation rn of the risky asset given by rn(ω) = ωEn1,
where En = [0, xn(α)] ⊆ Ω and xn(α)→ 1 as n→ ∞ such that7

EP log
(

αωEn1 + (1− a)
1
3

)
= EPn log

(
αω + (1− a)

1
3

)
.

Therefore, for every n we can consider the perturbed decision problems

max
α∈[0,1]

EP log
(

αωEn1 + (1− a)
1
3

)
. (4)

In these decision problems, the risky asset has an uncertain outcome for ω ∈ En

(where En is close to Ω for large n) and pays 1 for sure otherwise. A failure of pref-
erence for stability would consist in observing choices of the allocation of wealth α

for the problem (4) that for “large” n are very different from 71.63%.

4 A quantitative measure of robustness

This section develops a quantitative measure of robustness. Quantifying robust-
ness is interesting for two main reasons. First, one may want to quantify the sensi-
tivity of the predictions of a model to the choice of prior. Moreover, from a decision
theoretic perspective one may be interested in comparing attitudes toward robust-
ness for different agents. Such a measure is inspired by the work of Hampel (1971,
1974) on robust statistics.

Robustness will be measured with respect to some class of perturbations C ⊆ ∆
of probability measures such that P ∈ C. This set can be interpreted as a set of
perturbations considered plausible by the DM. At the end of this section I offer a
few possible specifications for the set C.

7To see this, note that EP log(αωEn1 + (1− a)) =
∫ 1

xn
log
(

αω + (1− α) 1
3

)
dω + (1 −

xn) log
(

α + (1− α) 1
3

)
and EPn log(αω + (1− a)) = (1 − 1

n )
∫ 1

0 log
(

αω + (1− α) 1
3

)
+

( 1
n ) log

(
α + (1− α) 1

3

)
. Thus, one can pick xn with xn → 1 so that the equality holds.
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Define the map W : ∆→ R by

W(µ) = sup
f∈F

∫
u( f )dµ for every µ ∈ ∆.

Given Q ∈ C, consider the affine directional derivative of W at P ∈ ∆ in the
direction Q8

dQW(P) = lim
h↓0

W(hQ + (1− h)P))−W(P)
h

.

The affine directional derivative is equivalent to a standard directional derivative
in the direction Q − P at the point P. It is an intuitive way to describe how the
value changes when the prior P is perturbed by the probability Q. 9

When the outcome space X is a general normed spaced, differentiability of the
value function W requires further assumptions on the utility function u.

Assumption 3 (Coercivity). For every x ∈ X it holds,

|u(x)| ≤ h(‖x‖)

where h : R+ → R is a non-decreasing function that satisfies h(x) → −∞ as
x → +∞. Moreover, u(xn) ↓ −∞ whenever ‖xn‖ → ∞.

For instance, this assumption is satisfied whenever u(x) = −‖x− k‖ for some
k ∈ X. This assumption is not necessary whenever X is a Euclidean space.

The main result of this section is an envelope theorem that gives an explicit
formula for the directional derivative dQW(P). Furthermore, it also provides a
connection between robustness and differentiation of W.

Theorem 3. Consider < with representation (u, P) and a decision problem F ⊆ F such
that robustness is satisfied and there is a unique optimal act f ∗. Suppose that X is a
Euclidean space. Then it holds that

dQW(P) =
∫

u( f ∗)dQ−
∫

u( f ∗)dP.

If X is a general normed space, the same result holds under Assumption 3.

Proof. See the Appendix.

8This approach was suggested by Srinivasan (1994).
9A complete study of affine derivatives can be found in Cerreia-Vioglio et al. (2019).
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Therefore, under robustness the effect of an infinitesimal perturbation can be
computed by simply comparing the value of the decision problem to the expected
utility obtained by choosing the optimal act for P when the “true” probability is Q.
Based on this result, for a given triple (u, P, F) robustness can thus be quantified
by taking the Q ∈ C that maximizes this difference.

Definition 3. For < with representation (u, P) and a decision problem F, define
m(u, P, F) as

m(u, P, F) = sup
Q∈C
|dQW(P)| = sup

Q∈C

∫
u( f ∗)dQ−

∫
u( f ∗)dP. (5)

This approach is similar to the one used in robust statistics (see Hampel (1974),
pp. 387-388). It is straightforward to find conditions that guarantee that the supre-
mum in (5) is attained.

Proposition 2. If C is weak∗-compact then there exists Q∗ such that

m(u, P, F) =
∫

u( f ∗)dQ∗ −
∫

u( f ∗)dP.

Proof. Omitted.

It is important to note that the magnitude of supQ∈C
∫

u( f ∗)dQ −
∫

u( f ∗)dP
does not in itself have any meaning in utility theory, since it can be made arbitrarily
large or small by an affine positive transformation of the utility function u. It can
nonetheless be used to compare attitudes toward robustness of different agents, as
discussed in the next result.

Consider two preferences<1 and<2 with representation given by (u, P1), (u, P2)

and fix a decision problem F ⊆ F . Let < denote the common preference over con-
stant acts. Assume that <1 and <2 have well-defined certainty equivalents, i.e.,
for i = 1, 2 and every f ∈ F there exists xi ∈ X such that x ∼i f .10 Denote with
fi an optimal act for agent i and suppose that f1 ∼1 x∗ ∼2 f2 for some x∗ ∈ X,
or equivalently that

∫
u( f1)dP1 =

∫
u( f2)dP2. This last assumption requires the

two agents to be comparable in the sense that they assign the same value to the

10Certainty equivalents exist under standard regularity assumptions on u. See for example
Lemma 3 in the appendix.
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decision problem. For a given agent i = 1, 2 and Q ∈ C define analogously to the
previous section the set of perturbations of the optimal act fi as

Fi
Q = { fiEx : E ∈ Σ, x ∈ X,

∫
u( fiEx)dPi =

∫
u( fi)dQ},

and
Fi

C = ∪Q∈CFi
Q.

Note that by Theorem 1 the sets Fi
Q are non-empty. Denote with fiEixi an optimal

act in Fi
C for agent i. The next proposition will show that these are well-defined

and will provide an interpretation for the statement that agent 2 is “more robust”
than agent 1, i.e. m(u, P1, F) ≥ m(u, P2, F).

Proposition 3. Assume that X = R and that the set C is weak∗-compact. Then m(u, P1, F) ≥
m(u, P2, F) if and only if f1E1x1 ∼1 x<y ∼2 f2E2x2 for some constant acts x, y ∈ R.

Proof. First, since C is weak∗-compact then there are Q1, Q2 ∈ C such that

sup
Q∈C

∫
u( f1)dQ =

∫
u( f1)dQ1,

and supQ∈C
∫

u( f2)dQ =
∫

u( f2)dQ2. It follows that for i = 1, 2 there exist fiEixi ∈
Fi

Qi
such that fiEixi <i g, for all g ∈ Fi

C. Because
∫

u( f1)dP1 =
∫

u( f2)dP2,
m(u, P1, F) ≥ m(u, P2, F) ⇐⇒

∫
u( f1)dQ1 ≥

∫
u( f2)dQ2. Moreover, by assump-

tion <1 and <2 admit certainty equivalents. Therefore, there exist x, y ∈ X such
that f1E1x1 ∼1 x and f2E2x2 ∼2 y, so that∫

u( f1)dQ1 =
∫

u( f1E1x1)dP1 = u(x),

and ∫
u( f2)dQ2 =

∫
u( f2E2x2)dP2 = u(y),

from which the result follows.

The interpretation of the previous result is simple: a more robust agent will
value less (in monetary terms) the set of perturbations of the optimal act than the
less robust agent.

Observe that since the ratio:

m(u, P1, F)
m(u, P2, F)

=
supQ∈C

∫
u( f ∗)dQ−

∫
u( f ∗)dP1

supQ∈C
∫

u( f ∗)dQ−
∫

u( f ∗)dP2
,
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is preserved under positive affine transformations of the utility function u, it can
be used to measure the robustness of P2 compared to that of P1.

From a numerical point of view, since computing m(u, P, F) involves solving
a linear program, one can apply standard techniques from linear optimization to
compute it. In some cases, explicit formulas can be computed.

Example 4. Suppose that C is the Kullback-Leibler (KL) neighborhood used by
Hansen and Sargent (see Strzalecki (2011)). More precisely, let

C = {Q ∈ ∆ : Q� P, R(Q‖P) ≤ K}, (6)

where K > 0 and

R(Q‖P) =
{ ∫

log
(

dP
dQ

)
dP if Q� P;

∞ otherwise.

The advantage of the KL neighborhood is that it is a very tractable non-parametric
set of probability measures. Using well-known results, one can obtain a closed
form representation for m(u, P, F) when C is given by (6).

Proposition 4. Suppose that C is given by (6). Then there exists θ ≥ 0 decreasing with
K, such that

m(u, P, F) = θ log
( ∫

e
1
θ u( f ∗)dP

)
−
∫

u( f ∗)dP.

Proof. See the Appendix.

Observe that in this example C need not be weak∗-compact. The comparative
statics result in Proposition 3 will hold whenever the optimization problem has a
solution, an assumption satisfied by the KL neighborhood.

5 Applications

This section provides applications of the measure of robustness to a climate miti-
gation problem (Example 1) and to a portfolio choice problem (Example 2). I show
how under certain assumptions prior distributions with heavy or fat tails can be
associated with higher robustness, as measured by the criterion developed in the
previous section.11 Part of the literature on decision theory has suggested that the

11I use the terms heavy and fat tails interchangeably, however some authors distinguish between
the two; see for example Taleb and Cirillo (2019) p.6.
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Bayesian framework cannot properly account for model uncertainty (see Marinacci
(2015), Berger and Marinacci (2020) pp.487-489). It is argued that all uncertainty
about the right probability or “model” is reduced to risk: heuristically, given a set
(Pθ)θ and a prior belief µ on θ the two-stage robust criterion problem

sup
f∈F

∫
u( f )dP = sup

f∈F

∫ (∫
u( f )dPθ

)
dµ,

is equivalent to the standard Bayesian criterion with average prior P̄ =
∫

Pθdµ(θ).
However, the point here is that averaging different models can lead to thicker tails,
e.g., the Student’s t-distribution can be written as a mixture of Gaussian distribu-
tions.12 Hence, model uncertainty can indeed lead to more robust decisions.

5.1 Climate mitigation

Consider the abatement policy from Example 2. Assume that β = 1, v(x) = −e−x,
r(a) = a, and that P is such that c2(a, ·) ∼ logN

(
aµ, σ2) for every a ∈ [0, ∞).

Therefore, a higher level of abatement policy at t = 1 increases the average level
of consumption at t = 2. The maximization problem can be written as:

V(P) = max
a∈R+

v (w1 − r(a)) + βEPv (c2(a, ·)) = max
a∈[0,∞)

− e
σ2
2 −aµ − ea−c̄.

Let
C = {Q ∈ ∆ : Q ∼ logN (µ, σ), (µ, σ) ∈ [

¯
µ, µ̄]× [

¯
σ, σ̄]}.

The set C can be thought of as a group of experts who vary in terms of the level
of the parameter (µ, σ2). Weitzman (2011) highlighted importance of heavy-tailed
distribution to model robustness with respect to catastrophic outcomes. Here I use
the parameter of kurtosis to measure how heavy tails are (see for example Müller
et al. (1998). Hence a higher level of variance σ2 is associated with heavier tails. The
next proposition offers a comparative statics result that shows how heavier tails are
ranked as more robust. Each P can be identified with the pair of parameters (µ, σ2)

and denote with aP the optimal action for the belief P.

Proposition 5. Consider P1, P2 ∈ C such that σ2
1 > σ2

2 , V(P1) = V(P2) and

σ2
1 − σ2

2
2

≤ (aP1µ1 − aP2µ2)− (aP1 − aP2)µ̄. (7)

12See for example Murphy (2012), p. 361.
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Then it holds that
m(v, P2, A) ≥ m(v, P1, A).

Proof. See the Appendix.

The above proposition formalizes the relationship between heavy-tailed dis-
tributions and robustness of mitigation policy. Heavy tails lead to more robust
choices, provided that the difference between σ2

1 and σ2
2 is small enough as de-

scribed by the bound in (7). Several papers have employed heavy tailed distri-
butions (e.g., Ikefuji et al. (2020), Ackerman et al. (2010)) to model catastrophic
climate risk. Proposition 5 demonstrates that climate mitigation policies that are
based on heavy-tailed distributions will be more robust to model misspecification.
This means that even if the underlying assumptions are incorrect, the impact on
social utility will be less severe. Further, it shows how the measure of robustness
developed here can be applied.

5.2 Portfolio choice

The Student’s t-distribution is often regarded as a robust alternative to the nor-
mal distribution. In statistics, it is typically employed in the rejection of outliers,
as first pointed out in a paper by De Finetti (1961). For example, Meinhold and
Singpurwalla (1989) study a robustification of the Kalman filter using multivariate
Student’s t-distributions. In economics, Weitzman (2007) studies implications to
asset pricing of parameter (or model) uncertainty, which leads to fat tailed distri-
butions.

Here I use the measure developed in the previous section to compare the ro-
bustness of the t-distribution to the normal distribution. More precisely, in a sim-
ple portfolio allocation problem, I show that if the utility function incorporates
explicitly a distaste for fat tails, modeling returns of a risky asset with a Student’s
t-distribution is ranked as more robust than normally distributed returns.

Consider again Example 1, in which the DM has to allocate his wealth (normal-
ized to 1) between a risk-free asset with return fixed at r f = 1 and a risky asset
with values in R, so that the problem can be written as

max
α∈[0,1]

EPu(αω + (1− α)).
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θ = 30 θ = 20 θ = 2

m(u, F, P1) 0.16574 0.16690 0.1918

m(u, F, P2) 0.16544 0.16650 0.1905
m(u,F,P1)
m(u,F,P2)

1.00181 1.00240 1.00682

Table 1: Measure of robustness for different neighborhood sizes.

To compare different probabilistic assumptions on P, it is necessary to specify a
set C of possible perturbations. A tractable specification that I adopt is the entropy
neighborhood from Example 6. In particular, I compare P1, P2 ∈ C such that P1 ∼
N(0, 1.716), P2 ∼ t(5) and take P1 to be the center of the neighborhood, so that
C = {Q ∈ ∆(R) : R(Q‖P1) ≤ K}.

To incorporate an explicit distaste for fat tails, I assume that u(x) = x− x4. To
understand such an assumption, note that the DM prefers higher expected value
and dislikes higher fourth moment. Since kurtosis, a measure of heavy tails, is
identified with the fourth moment, such a specification for u can be thought of
as a way to model a distaste for fat tails. Under these assumptions, the optimal
allocations of wealth for the two probabilities are α1 ≈ 0.120665, α2 ≈ 0.11752,
and the optimal values are the same, EP1u(α1ω + (1− α1)) = EP2u(α2ω + (1−
α2)) ≈ 0.163662 so that the one can use the comparative robustness result from
Proposition 3.

The next result provides a closed-form expression for m(u, Pi, F) analogous to
that in Proposition 4.

Proposition 6. There exists θ ≥ 0 decreasing with the size K such that for i = 1, 2

m(u, Pi, F) = θ log
(

EPe
1
θ u(αiω+(1−αi))

)
−EPi u (αiω + (1− αi)) .

Proof. See the Appendix.

Thanks to this result, it is possible to compare the values of m(u, Pi, F), i = 1, 2
for different values of θ.13 Recall that θ is decreasing with the size of the neighbor-
hood K. Approximate values are reported in Table 1.

13It is possible to check that P2 ∈ C for all the corresponding values of θ = 30, 20, 2.
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Since m(u, F, P1) > m(u, F, P2) for all values of θ, P2 is ranked as more robust
than P2. The main force behind this result is that the share of wealth invested in
the risky asset is higher under the normal distribution (i.e., α1 > α2), implying that

sup
Q∈C

EQu(α1ω + (1− α1)) > sup
Q∈C

EQu(α2ω + (1− α2)).

Moreover, the ratio m(u,F,P1)
m(u,F,P2)

increases as θ decreases, i.e. as the size of C increases
the relative robustness of P2 with respect to P1 increases.

6 Concluding remarks

This paper examined the question “can one develop a choice-based theory of ro-
bustness in a purely Bayesian framework?” The main motivation has been the
practical appeal of the Bayesian approach, irrespective of its ability to rationalize
actual behavior under uncertainty. I have provided a positive answer to the above
question. The starting point of this theory is an axiomatization of Bayesian de-
cision makers whose optimal value for a fixed decision problem is continuous in
the prior. The axiomatic approach is one of the major novelties of the paper. In
conclusion, this paper presents a theory of comparative robustness that enables
a formal comparison of the sensitivity of the implications of a Bayesian model to
variations in the prior. This contribution allows for a more thorough evaluation of
the robustness of Bayesian models.

Appendix: proofs

Proof of Theorem 1

Consider first a preliminary lemma.

Lemma 1. For every f ∈ F it holds that if Pn → P then∫
u( f )dPn →

∫
u( f )dP.

Proof. Since every act in F is bounded, for some x f , y f we have y f 6 f 6 x f , it
follows that

u(y f ) ≤ u( f (s)) ≤ u(x f ) ∀s ∈ S.
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Because u( f ) is bounded and continuous, the result follows by definition of weak
convergence (see Billingsley (1968)).

Proof of Theorem 1. Consider the vector measure λ : Σ→ R2 defined by

A 7→ λ(A) :=
( ∫

A
u( f )dP, P(A)

)
.

I claim λ is non-atomic. Indeed, for every A ∈ Σ

|λ|(A) = sup
∞

∑
i=1

P(Ai) + |νu◦ f (Ai)|

= sup
∞

∑
i=1

P(Ai) +
∞

∑
i=1
|νu◦ f (Ai)|

= sup
∞

∑
i=1
|νu◦ f (Ai)|+ P(A)

= |νu◦ f |(A) + P(A),

where the supremum is over all Σ-measurable partitions (Ai)
∞
i=1 of A. Thus |λ| =

|νu◦ f | + P.14 Now by Lemma 7 and 8 |νu◦ f | is non-atomic (or identically zero,
in which case the result is immediate), so that |λ| is the sum of two non-atomic
measures, hence it is non-atomic as well (e.g., see Johnson (1970), Theorem 1.2).

Now note that since we are considering bounded acts, for every f ∈ F there are
x f , y f such that

y f 6 f 6 x f .

To prove the claim, there are three cases to consider. If for some n∫
u( f )dP =

∫
u( f )Pn,

then we can just define An, f ≡ S and xn, f ≡ x f . If∫
u( f )dP <

∫
u( f )dPn,

since
u(x f ) ≥

∫
u( f )dPn,

14See the Supplemental Appendix, Lemma 7 for the definition of the measure νu◦ f .
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we can apply the fact that the signed measure νu◦ f is non-atomic and Lemma 6 to
obtain a family (Aα)α∈[0,1] such that∫

u( f Aαx f )dP =
∫

Aα

u( f )dP + (1− P(Aα))u(x f ) = α
∫

u( f )dP + (1− α)u(x f ).

It follows that { ∫
u( f Aαx f )dP : α ∈ [0, 1]

}
=

[ ∫
u( f )dP, x f

]
.

In particular, we have ∫
u( f )dPn ∈

[ ∫
u( f )dP, x f

]
,

so that
∫

Aαn
u( f )dP + (1− P(Aαn))u(x f ) =

∫
u( f )dPn where

1− αn =

∫
u( f )dP−

∫
u( f )dPn∫

u( f )dP− u(x f )
.

The last case to consider is ∫
u( f )dP >

∫
u( f )Pn,

which can be dealt with symmetrically to the previous case (in particular, using y f

in place of x f ).
Hence for every n there must be αn and x ∈ {x f , y f } such that∫

Aαn

u( f )dP + (1− P(Aαn))u(x) =
∫

u( f )dPn.

In particular, the αn’s satisfy

1− αn =



∫
u( f )dP−

∫
u( f )dPn(s)∫

u( f )dP−u(y f )

∫
u( f )dP−

∫
u( f )dPn > 0,

0 if
∫

u( f )dP−
∫

u( f )dPn = 0,∫
u( f )dP−

∫
u( f )dPn∫

u( f )dP−u(x f )

∫
u( f )dP−

∫
u( f )dPn(s) < 0.

Since by Lemma 1
∫

u( f )dPn →
∫

u( f )dP we have 1− αn → 0. It follows that
P(Aαn) = αn → 1 as desired.
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Proof of Theorem 2

Given (Pn)∞
n=1 such that Pn → P, for n = 1, . . . let Vn : F → R be defined by

f 7→
∫

u( f )dPn.

The next theorem is a type of Γ-convergence result for integral functionals of
independent interest (see also Lucchetti and Wets (1993)).

Theorem 4. For any Pn → P,
Γ- lim Vn = V

Proof. Since Vn( f ) → V( f ) for every f ∈ F, it is enough to show that for every
f ∈ F and fn → f we have

lim sup
n→∞

Vn( fn) ≤ V( f ).

Let fn → f , that is
sup
s∈S
‖ fn(s)− f (s)‖ → 0.

Consider any sn → s. Then it must be that

‖ fn(sn)− f (sn)‖ ≤ sup
s∈S
‖ fn(s)− f (s)‖.

Now by the triangle inequality,

‖ fn(sn)− f (s)‖ ≤ ‖ fn(sn)− f (sn)‖+ ‖ f (sn)− f (s)‖.

Thus fn(sn) → f (s). Now since u is continuous we have u( fn(sn)) → u( f (s)). I
claim this implies that

lim sup
n→∞

∫
u( fn)dPn ≤

∫
u( f )dP.

To show this, first suppose that u( fn), n = 0, 1 . . . , is uniformly bounded. With-
out loss of generality assume that 0 ≤ u( fn(s)) ≤ 1 for every s ∈ S and n ≥ 1.

Now recall that by Lemma 9 it holds

∫
u( fn)dPn ≤

1
K

(
1 +

K

∑
i=1

Pn(An
i )

)
,
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where An
i = {s ∈ S : u( fn(s)) ≥ xi} and xi = m + i M−m

K , i = 1, . . . , K − 1, where
A0

i := Ai. Since u( fn(sn)) converges to u( f (s)), we have

Ls An
i ⊆ Ai.

To show this, suppose that s ∈ Ls An
i . Then there exists snk → s ∈ S and u( f nk(snk)) ≥

xi for every k. But then since u( f nk(snk)) → u( f (s)) it follows that u( f (s)) ≥ xi,
i.e. s ∈ Ai. This implies that Ls An

i ⊆ Ai as wanted.
Hence by Lemma 10

lim sup Pn(An
i ) ≤ P(Ai).

It follows that

lim sup
n→∞

(
1 +

K

∑
i=1

Pn(An
i )

)
≤ 1 +

K

∑
i=1

P(Ai),

which implies

lim sup
n→∞

∫
u( fn)dPn ≤

1
K

(
1 +

K

∑
i=1

P(Ai)

)
,

so that

lim sup
n→∞

∫
u( fn)dPn ≤ lim

K→∞

1
K

(
1 +

K

∑
i=1

P(Ai)

)
≤
∫

u( f )dP.

as desired (this reasoning is taken from Lucchetti and Wets (1993)).
Now in general we know only that (u( fn))n is uniformly bounded above (un-

less X is a Euclidean space; see Lemma 2) since by Assumptions 1 and 2 there exists
x ∈ X, such that for every f ∈ F,

f 6 x,

so that for every f ∈ F we have

u( fn) ≤ u(x),

(i.e., u( fn(s)) ≤ u(x) for every s ∈ S) for every n.
Consider the functions

uj( fn) = max{u( fn),−j},

uj( f ) = max{u( f ),−j}.
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For each j, they are uniformly bounded. Since

uj( fn(sn))→ uj( f (s)),

for every j and s ∈ S the same reasoning as above applies. Hence

lim sup
n→∞

∫
u( fn)dPn ≤ lim sup

n→∞

∫
uj( fn)dPn ≤

∫
uj( f )dP,

for each j ≥ 1. Note that

lim
j→∞

∫
uj( f )dP→

∫
u( f )dP.

Indeed,

∫
uj( f )dP =

∫
{s: f (s)≥−j}

u( f )dP− jP({s ∈ S : u( f ) > j});

but
jP({s ∈ S : u( f ) > j})→ 0,

so that
lim sup

n→∞

∫
u( fn)dPn ≤ lim sup

n→∞

∫
uj( fn)dPn ≤

∫
u( f )dP,

as desired.

Theorem 5. < has a preference for stability if and only if it is robust.

Proof. Suppose that< has a preference for stability. By definition, this implies that
for every (Fn)n there is εn → 0 and a stable sequence gn = ( fnEnxn) ∈ Cu,P,εn .

In addition, it holds that ∫
u(gn)dP =

∫
u( fn)dPn.

Moreover, it must be that

sup
f∈F

∫
u( f )dPn = sup

g∈Fn

∫
u(g)dP.

Indeed, by construction it holds{ ∫
u( f )dPn : f ∈ F

}
=

{ ∫
u(g)dP : g ∈ Fn

}
.
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Therefore, for every n it holds fn ∈ Cu,Pn,εn(F). Since (gn)n is stable, there is a
subsequence fnk → f ∗ ∈ Cu,P(F). I claim that this implies that

lim
n→∞

sup
f∈F

∫
u( f )dPn =

∫
u( f ∗)dP. (8)

First note that ∫
u( f ∗)dP ≤ lim inf

n→∞
sup
f∈F

∫
u( f )dPn.

This follows from Proposition 2.9 in Attouch (1984).
Finally, we also have that∫

u( f ∗)dP ≥ lim sup
n→∞

sup
f∈F

∫
u( f )dPn.

Indeed, ∫
u( fn)dPn ≥ sup

f∈F

∫
u( f )dPn − εn, (9)

which implies that

lim sup
n→∞

∫
u( fn)dPn ≥ lim sup

n→∞
sup
f∈F

∫
u( f )dPn,

but by definition this means that

lim sup
n→∞

∫
u( fn)dPn = lim

n→∞

∫
u( fnk)dPnk ,

for some subsequence nk. By preference for stability, fnkj
→ f ′ ∈ Cu,P(F). But then

since lim supn→∞
∫

u( fn)dPn ≥ lim supn→∞ sup f∈F
∫

u( f )dPn we get

lim sup
j→∞

∫
u( fnkj

)dPnkj
≥ lim sup

n→∞
sup
f∈F

∫
u( f )dPn.

By Γ-convergence,

sup
f∈F

∫
u( f )dP =

∫
u( f ′)dP ≥ lim sup

j→∞

∫
u( fnkj

)dPnkj
≥ lim sup

n→∞
sup
f∈F

∫
u( f )dPn.

Hence (8) is proved.
Conversely, suppose that < is robust. Take f ∗ ∈ Cu,P(F). Since Γ-lim Vn = V,

there exists fn → f ∗ such that limn→∞ Vn( fn) = V( f ∗). Now I claim that for every
ε > 0 there exists Nε such that

fn ∈ Cu,Pn,ε(F) for all n ≥ Nε.
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To prove this claim, by contradiction assume that there is ε̄ > 0 and increasing map
λ : N→N such that for every n

fλ(n) 6∈ Cu,Pλ(n),ε̄(F),

so that ∫
u( fλ(n))dPλ(n) < sup

g∈F

∫
u(g)dPλ(n) − ε̄,

but then we obtain∫
u( f ∗)dP = lim

n→∞

∫
u( fλ(n))dPλ(n) ≤ lim

n
sup
g∈F

∫
u(g)dPλ(n) − ε̄ =

∫
u( f ∗)dP− ε̄,

a clear contradiction.
Now note that for every ε > 0 we can modify the sequence ( fn)n into the se-

quence ( f ε
n)n so that for every n it holds

f ε
n ∈ Cu,P,ε(F).

But then defining the double-indexed sequence gk,n by

gk,n ≡
( ∫

u( f
1
k

n )dPn, f
1
k

n ,
∫

u( f
1
k

n )dP
)

,

which satisfies for every k

gk,n →
( ∫

u( f ∗)dP, f ∗,
∫

u( f ∗)dP
)

,

where convergence is in the topological space R× Cb(S, X) × R endowed with
the product topology. Hence by Lemma 4 there exists ι : N → N increasing and

with limn→∞ ι(n) = ∞ such that limn→∞ gι(n),n =

( ∫
u( f ∗)dP, f ∗,

∫
u( f ∗)dP

)
.

Therefore,

f
1

ι(n)
n ∈ Cu,Pn, 1

ι(n)
(F),

1
ι(n)

→ 0.

Set f εn
n ≡ f

1
ι(n)

n and note that f εn
n ∈ Cu,Pn,εn . Note that f εn

n → f ∗ and
∫

u( f εn
n )dPn →∫

u( f ∗)dP.
I now claim that there exists a sequence gn ∈ Fn such that gn = f εn

n Enxn,
P(En)→ 1, xn eventually takes only two different values and∫

u( f εn
n Enxn)dP =

∫
u( f εn

n )dPn.
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Indeed, since
∫

u( f εn
n )dPn →

∫
u( f ∗)dP, there are x∗, y∗ and N such that for every

n ≥ N

u(y∗) ≤
∫

u( f εn
n )dPn ≤ u(x∗).

To see this, let x∗, y∗ be constant acts such that x∗ > f ∗ > y∗. Note that we have∫
u( f ∗)dP ∈ (u(y∗), u(x∗)),

so that by definition of convergence there must be N such that for every n ≥ N

u(y∗) ≤
∫

u( f εn
n )dPn ≤ u(x∗),

as desired. Given this result, I proceed as in the proof of Theorem 1. Define the
vector measure λn by

A 7→ (
∫

A
u( f εn

n )dP, P(A)) for every A ∈ Σ.

By the same reasoning as in the Proof of Theorem 1, λn is non-atomic. Hence for
every n there is a chain (En

α)α∈[0,1] such that for x ∈ {x∗, y∗} it holds∫
En

α

u( f εn
n )dP + (1− P(En

α))u(x) = α
∫

u( f εn
n )dP + (1− α)u(x).

Thus we can find sequences (En)n and (xn)n with xn ∈ {x∗, y∗} such that∫
u( f εn

n Enxn)dP =
∫

u( f εn
n )dPn and

1− P(An) =


∫

u( f εn
n )dP−

∫
u( f εn

n )dPn∫
u( f εn

n )dP−u(y∗)

∫
u( f εn

n )dP−
∫

u( f εn
n )dPn > 0,

0 if
∫

u( f εn
n )dP−

∫
u( f εn

n )dPn = 0,∫
u( f εn

n )dP−
∫

u( f εn
n )dPn∫

u( f εn
n )dP−u(x∗)

∫
u( f εn

n )dP−
∫

u( f εn
n )dPn < 0.

But note that
∫

u( f εn
n )dP−

∫
u( f εn

n )dPn → 0. Indeed, we know that
∫

u( f εn
n )dPn →∫

u( f ∗)dP. Moreover,
∫

u( f εn
n )dP→

∫
u( f ∗)dP. Hence

1− P(An)→ 0,

as desired.
Thus letting gn ≡ f εn

n Enxn we have gn ∈ Cu,P,εn(Fn). Finally, it holds that for a
subsequence f

εnk
nk ∫

‖ f ∗ − f
εnk
nk Enk xnk‖dP→ 0.
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Indeed, ∫
‖ f ∗ − f εn

n Enxn‖dP ≤
∫
‖ fn − fnEnxn‖dP +

∫
‖ fn − f ∗‖dP. (10)

Since f εn
n → f ∗ uniformly, it follows that∫

‖ f εn
n − f ∗‖dP→ 0.

Finally, note that we have∫
‖ f εn

n − f εn
n Enxn‖dP =

∫
‖0Enxn‖dP =

∫
‖xn‖1Ec

n dP,

where 0 denotes the zero vector. If necessary, by passing to a subsequence, 1Ac
n → 0

P-a.s. thus by applying Lebesgue’s dominated convergence theorem we get∫
‖ f

εnk
nk − f

εnk
nk Enk xnk‖dP→ 0,

which by (10) gives ∫
‖ f ∗ − f

εnk
nk Enk xnk‖dP→ 0,

as desired.

Proof of Proposition 1

Since F is a compact subset of Cb(S, X) the sequence Vn is equi-coercive (cf. Dal Maso
(1993), Definition 1.12). Now since Vn Γ-converges to V, by applying Theorem 7.8
in Dal Maso (1993) the result follows. If the optimum is unique, then it suffices to
apply Corollary 7.24 in Dal Maso (1993).

Proof of Corollary 1

The “if” part is immediate.
Conversely, if fn is a sequence of εn acts that converges to an optimal act f ∗,

then by applying Corollary 7.20 in Dal Maso (1993) we get that∫
u( fn)dPn →

∫
u( f ∗)dP.

By using the same reasoning as in the proof of Theorem 2, one can construct a
sequence gn = fnEnxn such that gn ∈ Cu,P,εn(Fn) and for a subsequence gnk satisfies∫

‖gnk − f ∗‖dP→ 0,

as desired.
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Proof of Theorem 1

Lemma 2. Under Assumption 3, V : F → R is continuous.

Proof. Since fn → f , the sequence fn is uniformly bounded, i.e. ‖ fn‖ ≤ K′ for some
K′ > 0. By Assumption 3,

|u( fn(s))| ≤ h(‖ fn(s)‖)∀s ∈ S.

Since h is non-decreasing, it follows that h(‖ fn(s)‖) ≤ h(K′) for all s ∈ S. The
result follows by the dominated convergence theorem.

If X is a Euclidean space, then since R = ∪∞
n=1{ fn(s) : s ∈ S} is bounded, by

continuity of u the set u(R) is bounded, so that the result follows by dominated
convergence.

Proof of Theorem 3. The proof of this result is based on standard techniques; see
for example Bonnans and Shapiro (2013), Proposition 4.12 or Battauz et al. (2015).
Consider any hn ↓ 0. Note that by definition it holds

∫
u( f ∗)d((1− hn)P + hnQ) ≤

W((1− hn)P + Qhn) and
∫

u( f ∗)d((1− hn)P + hnQ). Moreover, letting εn = hn
n ,

any sequence ( fεn)n satisfies

W((1− hn)P + Qhn) ≤
∫

u( fεn)d((1− hn)P + Qhn) + εn.

Also note that∫
u( fεn)d((1− hn)P + Qhn)−

∫
u( fεn)dP

hn
=
∫

u( f ∗εn)d(Q− P).

Thus we get the following inequalities∫
u( f ∗)d((1− hn)P + hnQ)−

∫
u( f ∗)dP

hn
−
∫

u( f ∗)d(Q− P)

≤ W((1− hn)P + Qhn)−W(P)
hn

−
∫

u( f ∗)d(Q− P)

≤
∫

u( f ∗εn)d(Q− P) +
εn

hn
−
∫

u( f ∗)d(Q− P).

Then since we have robustness it follows that fεhn
→ f ∗. Indeed, because the

optimal act is unique, by Theorem 2 and Corollary 7.17 in Dal Maso (1993), any
convergent subsequence ( fεhnk

)k converges to f ∗, which implies that fεhn
→ f ∗.

Hence we find that∫
u( f ∗εhn

)d(Q− P) +
εhn

hn
−
∫

u( f ∗)d(Q− P)→ 0.
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Indeed, by Lemma 2 ∫
u( f ∗εhn

)d(Q− P)→
∫

u( f ∗)d(Q− P),

so that ∫
u( f ∗εhn

)d(Q− P) +
εhn

hn
−
∫

u( f ∗)d(Q− P)→ 0.

Since this holds for any hn ↓ 0, we can conclude that

lim
h↓0

W((1− h)P + Qh)−W(P)
h

=
∫

u( f ∗)dQ−
∫

u( f ∗)dP.

Proof of Proposition 3

Lemma 3. Suppose that X = R and that Assumption 3 is satisfied. Then for every f ∈ F
there exists x ∈ R such that f ∼ x.

Proof. First note that u(R) = (−∞, m̄] for some m. Indeed, by continuity of u
for any t ∈ R the set U(t) = {x ∈ R : u(x) ≥ t} is closed. Moreover, by As-
sumption 3 it is also a bounded set. To see this, suppose that there exists a se-
quence (xn)∞

n=1 in U(t) such that |xn| → ∞ then u(xn) ↓ −∞ as n → ∞, which
leads to a contradiction. Hence by in Dal Maso (1993), there exists x̄ such that
u(x̄) = supx∈R u(x) ≡ m̄. Moreover, note that u(n) ↓ −∞ as n ↑ ∞ so that u is
unbounded below. By continuity of u, the set u(R) must be an interval, so that
u(R) = (−∞, m̄] as desired.

Now take any f ∈ F . Consider the sets {x ∈ R : x � f } = {x ∈ R : u(x) >∫
u( f )dP} and {x ∈ R : f � x} = {x ∈ R :

∫
u( f )dP > u(x)}. Both these sets are

open. Moreover, {x ∈ R : f � x} is non-empty. If {x ∈ R : x � f } is empty, then
we are done. If it is not empty, then since the union of the two is R, the two sets
cannot be disjoint.

Proof of Proposition 4

Observe that
− sup

Q∈C

∫
u( f ∗)dQ = inf

Q∈C

∫
−u( f ∗)dQ.
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It follows that one can use Theorem 1 in Luenberger (1997) (p. 217). Indeed, note
that all the assumptions of this result are satisfied: the map Q 7→

∫
−u( f ∗)dQ

is affine and thus convex, C is a convex subset of ca(Σ) (by well known results),
R(P‖P) = 0 < K. Hence there exists θ decreasing with K such that

inf
Q∈C

∫
−u( f ∗)dQ = inf

Q∈∆

∫
−u( f ∗)dQ + θR(Q‖P), for some θ ≥ 0.

Since the map s 7→ −u( f ∗(s)) is a bounded measurable function, by applying
a well-known variational formula (e.g., see Dupuis and Ellis (1997), Proposition
1.4.2, p. 27) then we obtain,

inf
Q∈∆

∫
−u( f ∗)dQ + θR(Q‖P) = −θ log

( ∫
e

1
θ u( f ∗)dP

)
,

so that

sup
Q∈C

∫
u( f ∗)dQ−

∫
u( f ∗)dP = θ log

( ∫
e

1
θ u( f ∗)dP

)
−
∫

u( f ∗)dP.

as desired.

Proof of Proposition 5

The optimization problem for every P ∈ C with parameters (µ, σ2) can be written
as

V(µ, σ2) = max
a∈[0,∞)

− e
σ2
2 −aµ − ea−c̄.

The solution is given by the first order condition:

µe
σ2
2 −aµ = ea−c̄.

We obtain the unique solution for P with parameters (µ, σ2)

aP =
ln(µ) + σ2

2 + c̄
µ + 1

.

So that we have

V
(

µ, σ2
)
= −e

σ2
2 −aPµ − eaP−c̄.
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Since the objective function is strictly increasing in µ and strictly decreasing in σ2,
it is straightforward to see that

∂V
(
µ, σ2)

∂µ
> 0, (11)

and
∂V
(
µ, σ2)

∂σ2 < 0. (12)

It follows that σ2
1 > σ2

2 and V(P1) = V(P2) imply that µ1 > µ2. Moreover, together
(11) and (12) also imply that

sup
(µ,σ2)

{
V(µ, σ2)

}
−V(µ, σ2) = e

σ2
2 −aPµ − e ¯

σ2

2 −aPµ̄.

Hence we obtain

m(v, P2, A) ≥ m(v, P1, A) ⇐⇒ e
σ2

2
2 −aP2 µ2 − e ¯

σ2

2 −aP2 µ̄ ≥ e
σ2

1
2 −aP1 µ1 − e ¯

σ2

2 −aP1 µ̄,

which is equivalent to

e
σ2

2
2 −aP2 µ2 − e

σ2
1
2 −aP1 µ1 ≥ e ¯

σ2

2 −aP2 µ̄ − e ¯
σ2

2 −aP1 µ̄,

which in turn is implied by convexity of ex combined with (7). We can therefore
conclude that m(v, P2, A) ≥ m(v, P1, A) as desired.

Proof of Proposition 6

It is enough to check that for i = 1, 2 and every Q ∈ C

lim
h↓0

sup
α∈[0,1]

EhQ+(1−h)Pi
u(αω + (1− α))− EPi u(αiω + (1− αi))

h

= EQu(αiω + (1− αi))− EPi u(αiω + (1− αi)).

Indeed, this would imply that

m(u, Pi, F) = sup
Q∈C

EQu(αω + (1− α))−EPi u(αω + (1− α),
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so that by applying the same reasoning as in Proposition we get that there exists
θ ≥ 0 decreasing with the size K of the neighborhood C such that

sup
Q

EQ∈Cu(αiω + (1− αi)) = θ log
(

EPe
1
θ u(αiω+(1−αi))

)
,

from which the desired result follows.
To prove the claim, note that we have the following inequality for any hn ↓ 0

EhnQ+(1−hn)Pi
u(αiω + (1− αi))− EPi u(αiω + (1− αi))

hn

≤ sup
α∈[0,1]

EhnQ+(1−hn)Pi
u(αω + (1− α))− EPi u(αiω + (1− αi))

hn
,

so that,

EQu(αiω + (1− αi))−EPi u(αiω + (1− αi))

= lim
n→∞

EhnQ+(1−hn)Pi
u(αiω + (1− αi))−EPi u(αiω + (1− αi))

hn

≤ sup
α∈[0,1]

EhnQ+(1−hn)Pi
u(αω + (1− α))−EPi u(αiω + (1− αi))

hn
,

Moreover, for any sequence (αn
i )n of wealth allocations optimal for hnQ + (1 −

hn)Pi (they exist by compactness and continuity), because αi is the unique optimal
allocation for the belief α, by the same reasoning as in Proposition 1 it holds that
αn

i → αi which implies

EQu(αiω + (1− αi))−EPi u(αiω + (1− αi))

= lim
n→∞

EhnQ+(1−hn)Pi
u(αn

i ω + (1− αn
i ))− EPi u(α

n
i ω + (1− αn

i ))

hn

≥ sup
α∈[0,1]

EhnQ+(1−hn)Pi
u(αω + (1− α))− EPi u(αiω + (1− αi))

hn
.

so that
m(u, Pi, F) = sup

Q∈C
EQu(αω + (1− α))−EPi u(αω + (1− α),

as desired.

37



Bibliography

References

Ackerman, F., Stanton, E. A., and Bueno, R. (2010). Fat tails, exponents, extreme
uncertainty: Simulating catastrophe in dice. Ecological Economics, 69(8):1657–
1665.

Aliprantis, C. and Border, K. (2006). Infinite dimensional analysis. Springer.

Attouch, H. (1984). Variational convergence for functions and operators, volume 1.
Pitman Advanced Publishing Program.

Battauz, A., De Donno, M., and Ortu, F. (2015). Envelope theorems in banach
lattices and asset pricing. Mathematics and Financial Economics, 9(4):303–323.

Berger, J. O., Insua, D. R., and Ruggeri, F. (2000). Robust Bayesian Analysis. Springer.

Berger, L. and Marinacci, M. (2020). Model uncertainty in climate change eco-
nomics: A review and proposed framework for future research. Environmental
and Resource Economics, 77(3):475–501.

Billingsley, P. (1968). Convergence of probability measures. John Wiley & Sons.

Billingsley, P. (2008). Probability and measure. John Wiley & Sons.

Bommier, A., Fabre, A., Goussebaı̈le, A., and Heyen, D. (2021). Disagreement
aversion. Available at SSRN. https://papers.ssrn.com/sol3/papers.cfm?

abstract_id=3964182.

Bonnans, J. F. and Shapiro, A. (2013). Perturbation analysis of optimization problems.
Springer Science & Business Media.

Braides, A. (2002). Gamma-convergence for Beginners, volume 22. Clarendon Press.

Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L., and Stanca,
L. (2019). Affine Gateaux differentials and the von Mises statistical calculus.
Mimeo.

38

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3964182
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3964182


Dal Maso, G. (1993). An introduction to Γ-convergence, volume 8. Springer Science
& Business Media.

De Finetti, B. (1961). The bayesian approach to the rejection of outliers. In Proceed-
ings of the fourth Berkeley Symposium on Probability and Statistics, volume 1, pages
199–210. University of California Press Berkeley.

Dekel, E., Fudenberg, D., and Morris, S. (2006). Topologies on types. Theoretical
Economics, 1(3):275–309.

Dempster, A. P. (1975). A subjectivist look at robustness. Bull. Internat. Statist. Inst,
46:349–374.

Diestel, J. and Uhl, J. (1977). Vector measures. American Mathematical Society.

Dupuis, P. and Ellis, R. S. (1997). A Weak Convergence Approach to the Theory of Large
Deviations, volume 313. John Wiley & Sons.

Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The quarterly journal of
economics, 75(4):643–669.

Fishburn, P. C., Murphy, A. H., and Isaacs, H. H. (1968). Sensitivity of decisions to
probability estimation errors: A reexamination. Operations Research, 16(2):254–
267.

Fryszkowski, A. (2004). Fixed point theory for decomposable sets, volume 2. Springer
Science & Business Media.

Gilboa, I. and Marinacci, M. (2016). Ambiguity and the bayesian paradigm. In
Readings in Formal Epistemology, chapter 21. Springer.

Gilboa, I. and Schmeidler, D. (1989). Maxmin expected utility with non-unique
prior. Journal of mathematical economics, 18(2):141–153.

Giocoli, N. (2013). From wald to savage: homo economicus becomes a bayesian
statistician. Journal of the History of the Behavioral Sciences, 49(1):63–95.

Gollier, C., Jullien, B., and Treich, N. (2000). Scientific progress and irreversibil-
ity: an economic interpretation of the ‘precautionary principle’. Journal of Public
Economics, 75(2):229–253.

39



Good, I. (1971). The probabilistic explication of information, evidence, surprise,
causality, explanation, and utility. Foundations of statistical inference, 57:108–127.

Hampel, F. R. (1971). A general qualitative definition of robustness. The Annals of
Mathematical Statistics, 42(6):1887–1896.

Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal
of the american statistical association, 69(346):383–393.

Hansen, L. and Sargent, T. J. (2001). Robust control and model uncertainty. Ameri-
can Economic Review, 91(2):60–66.
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7 Supplemental Appendix

This Supplemental Appendix contains three parts. Section 7.1 contains prelimi-
nary mathematical results that are used for the proofs of the main results. Section
7.2 contains an axiomatization of the subjective expected utility criterion in (2). Fi-
nally, Section 7.3 contains extensions of the main results. More in detail, Theorem
2 is built on the assumption that the decision problem F contains only continu-
ous acts and the assumption that the utility function u is continuous and state-
independent. In applications, such assumptions might be undesirable. I show
how to relax these assumptions. To do this, it is enough to prove versions of The-
orem 1 and Theorem 4 under different assumptions on F and u. Theorem 2 then
follows by these two results.

7.1 Mathematical preliminaries

7.1.1 Topological preliminaries

Let (T, τ) be a first-countable topological space (so that only sequences need to be
considered). Given a sequence (tn)∞

n=1 we denote convergence to a point t ∈ T by
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tn
τ−→ t. A double-indexed sequence is a mapping t : N×N→ T.

Lemma 4. Consider a double-indexed sequence (tn,m)(n∈N,m∈N) such that

(1) For every m, t(n,m)
τ−→ tm for some tm ∈ T.

(2) tm
τ−→ t for some t ∈ T.

Then there exists a mapping ι : N → N increasing and with limm→∞ ι(m) = ∞
such that

tn,ι(n)
τ−→ t.

Proof. See Attouch (1984), Corollary 1.18.

As discussed in the main text, one of the main mathematical techniques for
studying robustness is that of Γ-convergence. Γ-convergence is a notion of conver-
gence for functionals germane to studying the convergence of optima and max-
imizers. Its usual formulation is for minimization problems. Here I present the
analogous notion for maximization problems.

Definition 4. Let T be a first-countable topological space. A sequence of functions
Fn : T → R Γ-converges to a function F : T → R if

(i) For every sequence tn
τ−→ t,

F(t) ≥ lim sup
n→∞

Fn(tn).

(ii) For every t ∈ T, there exists a sequence sequence tn
τ−→ t such that

F(t) ≤ lim inf
n→∞

Fn(tn).

If Fn Γ-converges to F write
Γ- lim Fn = F.

The assumption that T is first-countable is necessary to focus only on sequences
and avoid the use of nets. Γ-convergence is tightly connected to perturbations
of optimization problems as the next result shows. This result will be extremely
important in the proof of Theorem 2.
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Theorem 6 (Attouch (1984), Theorem 1.10). Consider a first-countable topological space
T and a functional F : T → R. A sequence of functionals Fn : T → R such that Γ-
lim Fn = F and argmaxF 6= ∅ satisfies sup Fn → max F if and only if there exists
εn → 0 and a compact sequence (tn)n such that tn is εn-optimal for Fn.

The following simple example shows how Γ-convergence is not enough to get
convergence of suprema and also shows the key role played by compactness.

Example 5. Consider the sequence of functions Fn : R→ R defined by

Fn(t) =


1 t ≥ n,
t
n 0 ≤ t < n,

t t < 0.

It is possible to show that Γ-lim Fn = F where F is defined by

F(t) =

0 t ≥ 0,

t t < 0.

This follows by applying Proposition 5.2 in Dal Maso (1993) and the fact that Fn

converges to F uniformly on every bounded set. However, note that maxt∈R Fn(t) =
1→ 1 6= maxt∈R F(x) = 0 and argmaxt∈RFn(t) = n→ ∞.

The main references for the literature on Γ-convergence are Attouch (1984),
Dal Maso (1993) and Braides (2002). An important notion of convergence related
to Γ-convergence is that of Kuratowski convergence. Given a sequence (Cn)∞

n=1 of
subsets of T, let

Ls Cn = {t ∈ T : there exist (nk)
∞
k=1 and tnk ∈ Cnk such that tnk

τ−→ t}.

and

Li Cn = {t ∈ T : tn
τ−→ t, and for some k, tn ∈ Cn∀n ≥ k}.

Kuratowski limits allow for a different characterization of Γ-limits.

Theorem 7. Consider a sequence Fn : T → R. Let

hypo(Fn) = {(t, x) ∈ T ×R : Fn(t) ≤ x}.

Then Γ-lim Fn = F if and only if Li hypo(Fn) = Ls hypo(Fn) = hypo F.
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Proof. See Dal Maso (1993), Theorem 4.16.

In words, Γ-convergence of Fn to F is equivalent to the Kuratowski convergence
of the hypo-graphs (the subset of T × R that lies below the graph of Fn) of Fn

to that of F. This gives an intuitive geometric characterization of Γ-convergence
(and explains the equivalent name used in the literature of hypo-convergence/epi-
convergence). Note that Kuratowski convergence is weaker than the more familiar
(to an economist) Hausdorff convergence.

7.1.2 Measure-theoretic preliminaries

Fix a measurable space (Ω,A) whereA is a σ-algebra of subsets of Ω. As standard,
call a map µ : A → [0, ∞) a measure if it is countably additive. For k ∈ N, call
ν : A → Rk a vector measure if for every sequence (Ai)

∞
i=1 of pairwise disjoint sets

it holds

ν

( ∞⋃
i=1

Ai

)
= lim

n→∞

n

∑
i=1

ν(Ai),

where the limit on the right hand side is taken with respect to the norm defined by
‖x‖1 = ∑k

i=1 |xi| for x = (xi)
k
i=1 ∈ Rk.

Given a vector measure ν and A ∈ A, let |ν|(A) be the measure given by

|ν|(A) = sup
(Bi)

m
i=1∈Π(A)

∑‖ν(Bi)‖1,

where Π(A) = {B = (Bi)
∞
i=1 : B is a partition of A}. If |ν|(A) < ∞ for every

A ∈ A, let |ν| denote the measure |ν| : A → R defined by A 7→ |ν|(A).

Proposition 7. |ν| is a measure.

Proof. This is a well-known result so I omit the proof. See Diestel and Uhl (1977).

Recall that measure µ is non-atomic if for every A such that µ(A) > 0 there
exists B ⊂ A such that µ(A) > µ(B) > 0. A vector measure ν is non-atomic if |ν|
is non-atomic. The following result is well-known.

Lemma 5 (Lyapunov’s Theorem). Let ν be non-atomic vector measure. Then the set

{ν(A) : A ∈ A},

is compact and convex.
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Proof. This is a well-known result so I omit the proof. See Diestel and Uhl (1977)
or Fryszkowski (2004) for a complete proof.

A stronger result actually holds. A collection (Aα)α∈[0,1] with Aα ∈ A for every
α ∈ [0, 1] is a chain if A0 = ∅, A1 = Ω and t ≤ s =⇒ At ⊆ As.

Lemma 6. If ν is non-atomic vector measure, then there exists a chain (Aα)α∈[0,1] such
that

ν(Aα) = αν(Ω).

Proof. See Fryszkowski (2004), Theorem 15.

Lemma 7. Let µ be a real valued non-atomic measure. Then if f is integrable and | f | 6= 0
µ-a.s., the measure v f defined by

ν f (A) =
∫
| f (ω)|dµ(ω) ∀A ∈ A,

is non-atomic.

Proof. It is well known that | f | is also integrable and that v f is a measure. Suppose
that E is an atom for v f , and consider the set E′ = {| f | > 0} ∩ E. Then E′ is
also an atom for ν f . Since ν f is non-atomic, there exists A ⊂ E′ such that 0 <

ν f (A) < ν f (E′). Note that f = 0 µ-a.s. on either A or E′ \ A (otherwise ν f (A) > 0
and ν f (E′ \ A) > 0, which contradicts the set E′ being an atom). However, this
contradicts the assumption that | f | is positive on E′.

Lemma 8. Let µ be a measure and f : Ω→ R µ-integrable. Define the measure v f by

ν f (A) =
∫

A
f (ω)dµ(ω) ∀A ∈ A.

Then it holds that
|v f |(A) =

∫
A
| f (ω)|dµ(ω),

for every A ∈ A.

Proof. Let A ∈ A and consider a partition (Bi)
∞
i=1 of A. We have

∞

∑
i=1
|v f (Bi)| =

∞

∑
i=1

∣∣∣∣ ∫Bi

f (ω)dµ(ω)

∣∣∣∣ ≤ ∞

∑
i=1

∫
Bi

| f (ω)|dµ(ω) =
∫

A
| f (ω)|dµ(ω).
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Thus |v f |(A) ≤
∫

A | f (ω)|dµ(ω).
Conversely, consider the partition of A ∈ A given by B1 = {ω ∈ A : f (ω) ≥ 0}

and B2 = {ω ∈ A : f (ω) < 0}. Then by definition∫
| f (ω)|dµ(ω) =

∫
A

f+dµ(ω) +
∫

A
f−dµ(ω) = |ν f (B1)|+ |ν f (B2)| ≤ |v f |(A).

Hence |v f |(A) =
∫

A | f (ω)|dµ(ω) for every A ∈ A as desired.

Lemma 9 (Approximation by simple functions). Now suppose that Ω is a metric space
with A being the Borel σ-algebra. Consider a measurable function g : Ω → R such that
for some m, M, m ≤ g(s) ≤ M for all s ∈ S. Then for any K ∈N we have∫

gdµ ≤ m +
M−m

K

K

∑
i=0

µ(Ai),

where
Ai = {ω ∈ Ω : g(ω) ≥ xi},

and xi = m + i M−m
K for i = 0, 1, . . . , K.

Proof. Note that

g(s) ≤
K

∑
i=1

xi1g−1([xi−1,xi))
(s),

thus ∫
gdµ ≤

K

∑
i=1

xiµ(g−1([xi−1, xi))) =
K

∑
i=1

xiµ(Ai−1 \ Ai)

≤
K−1

∑
i=1

xiµ(Ai−1 \ Ai) + xKµ(AK)

≤ m +
M−m

K

K

∑
i=0

µ(Ai),

as desired.

Lemma 10. Now assume that Ω is a Polish space and that A is the Borel σ-algebra.
Consider a sequence (An)∞

n=1 of subsets of Ω such that Ls An ⊆ A. Then

lim sup
n→∞

µ(An) ≤ µ(A).

Proof. See Lucchetti et al. (1994).
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7.2 Axiomatic foundation

I adopt a version of Kopylov’s (2010) characterization of subjective expected utility
with countably additive probabilities.

P1 < is complete and transitive.
P2 For every f , g, h, h′ ∈ F and E ∈ Σ,

f Eh < gEh =⇒ f Eh′ < gEh′.

P3 If f > g then f < g.
P4 For every A, B ∈ Σ and x, y, x′, y′ ∈ X such that x � y, x′ � y′it holds

xAy < xBy =⇒ x′Ay′ < x′By′.

P5 ∃x, y ∈ X such that x � y.
For the next axiom, the following piece of notation is needed. If (Ai)

∞
i=1 is a

sequence of events in Σ, write Ai  ∅ if Ai ⊇ Ai+1 for all i = 1, . . . , . . . and ∩∞
i=1Ai

is either empty or a singleton.
P6 For all f , g ∈ F , x ∈ X and any sequence of events (An)∞

n=1 such that
An  ∅, if f < xAig or xAi f < g for all i ≥ 1, then f < g.

Continuity The set {x ∈ X : x < y} and {x ∈ X : x < y} are closed for every
y ∈ X.

Theorem 0. < satisfies P1-P6 and Continuity if and only if it is represented by
V : F → R defined by

V( f ) =
∫

u( f )dP ∀ f ∈ F . (13)

where P ∈ ∆ is non-atomic and u : X → is continuous.
Moreover, < has another representation as in (2) with components u′ : X → R

P′ : Σ → [0, 1] if and only if P′ = P and u = αu′ + β for some α > 0 and constant
β.

Proof. Since S is assumed to be a Polish space, the Borel σ-algebra Σ contains a
countable base for the topology on S. This implies that Σ is countably separated.
By Kopylov (2010), < has a representation as in (2). It is routine to show that
u : X → R is continuous if and only if < satisfies the axiom of continuity.
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7.3 Extensions

7.3.1 Theorem 2 with simple acts

Theorem 2 is built on the assumption that the set F contains only continuous
acts. This assumption excludes simple acts. In many settings, such as exper-
iments, it is important to allow for simple acts such as bets on events. Here I
show how the same result can be obtained when F contains simple acts that sat-
isfy a regularity condition. Continuous acts are necessary in Lemma 1 to show
that

∫
u( f )dPn →

∫
u( f )dP for every f ∈ F as Pn → P. However, this condition

holds for a much larger class of acts. For example, it holds whenever the func-
tion s 7→ u( f (s)) is measurable with respect to the class of continuity sets of P.
A set A ∈ Σ is a continuity set for P (see Billingsley (1968)) if P(∂A) = 0, where
∂A denotes the boundary of the set A. For example, when S = [0, 1] and P is the
Lebesgue measure, then any open or closed set is a continuity set. Continuity sets
are a rich class of sets. First, they form a ring (i.e., they are closed under union
and intersection). Moreover, under the assumption that S is a Polish space, the
σ-algebra generated by the class of continuity sets is the Borel σ-algebra Σ.

Consider the following alternative to Assumption 1.

Assumption 4. Every f ∈ F has finite support and is upper-semicontinuous. More-
over, for every f ∈ F and x ∈ X, the events ∂{s ∈ S : f (s) < x} and ∂{s ∈ S : x <
f (s)} are P-null.

In words, F contains simple acts that are upper-semicontinuous and are mea-
surable with respect to the class of continuity sets of P. When S = [0, 1] the pre-
vious assumption will be satisfied whenever F contains simple acts that can be
written as f = ∑N

i=1 xi1Ai , where Ai = [ai, bi), ai+1 = bi, a1 = 0 and bN = 1. An
example of such an act is given by f (s) = 1 for s < 1

2 and f (s) = 0 for s ≥ 1
2 .

Lemma 11. Suppose that F satisfies Assumption 4. Then for every f ∈ F if Pn → P it
holds that ∫

u( f )dPn →
∫

u( f )dP.

Proof. Observe that u( f ) = ∑N
i=1 u(xi)1Ai , where each set Ai is a continuity set

for P. Then
∫

u( f )dPn = ∑N
i=1 u(xi)Pn(Ai). By Theorem 2.1 in Billingsley (2008),

Pn(Ai)→ P(Ai) for every i, which implies the desired result.
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Moreover, Theorem 4 also holds in this setting.

Lemma 12. For any Pn → P,
Γ- lim Vn = V.

Proof. Thanks to Lemma 11, it is enough to show that for every f ∈ F and fn → f

lim sup
n→∞

∫
u( fn)dPn ≤

∫
u( f )dP.

First I claim that for every sn → s, lim supn→∞ u( fn(sn)) ≤ u( f (s)). Since fn → f ,
by the triangle inequality

‖ fn(sn)− f (s)‖ ≤ ‖ fn(sn)− f (sn)‖+ ‖ f (sn)− f (s)‖,

which by upper-semicontinuity of f implies that

lim sup
n→∞

|| fn(sn)− f (s)|| ≤ 0.

Hence by continuity of u we have that lim supn→∞ u( fn(sn)) ≤ u( f (s)). Given this
result, showing that lim supn→∞

∫
u( fn)dPn ≤

∫
u( f )dP follows the same step as

the proof of Theorem 4.

Now because F contains only simple acts, we can still endow it with the sup-
metric distance. Moreover, thanks to the previous Lemmas, Theorem 1 holds ver-
batim. Therefore, the notion of a stable sequence of acts is the same as in Definition
2. Preference for stability is also defined in the same way.

Hence thanks to Lemma 11 and Lemma 12, we can obtain a version of Theorem
2 under Assumption 4.

Proposition 8. < is robust if and only it satisfies preference for stability.

7.3.2 Extension with upper-semicontinuous utility

In some applications assuming that the utility function u is continuous might be
too strong. For example, when X = R one may want to allow for the utility func-
tion defined by u(x) = 1 for x ≥ 0 and u(x) = 0 for x < 0. Here I show that
Theorem 2 holds even when u upper-semicontinuous. In maximization problems,
upper-semicontinuity of u constitutes a minimally desirable condition.

The only part in which continuity of u is used is in Theorem 4. However, only
upper-semicontinuity of u is required as shown by the next proposition.
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Proposition 9. For any Pn → P,

Γ- lim Vn = V

Proof. Since Vn( f ) → V( f ) for every f ∈ F, it is enough to show that for every
f ∈ F and fn → f we have

lim sup
n→∞

Vn( fn) ≤ V( f ).

Let fn → f , that is
sup
s∈S
‖ fn(s)− f (s)‖ → 0.

Consider any sn → s. Then it must be that

‖ fn(sn)− f (sn)‖ ≤ sup
s∈S
‖ fn(s)− f (s)‖.

Now by the triangle inequality,

‖ fn(sn)− f (s)‖ ≤ ‖ fn(sn)− f (sn)‖+ ‖ f (sn)− f (s)‖.

Thus fn(sn)→ f (s). Now since u is continuous we have

lim sup
n→∞

u( fn(sn))→ u( f (s)).

Using the same reasoning as in the proof of Theorem 4 we find that

lim sup
n→∞

∫
u( fn)dPn ≤

∫
u( f )dP.

Therefore, Theorem 2 holds under upper-semicontinuity of u.

7.3.3 Extension with state-dependent utilities

As discussed in Example 2, in some applications it might be relevant to allow
for state-dependent utility. Here I discus how to provide a version of Theorem
2 while allowing for state-dependent utility. First I discuss a specific form of state-
dependent utility.

Assume that < has the following representation

V( f ) =
∫

u(s, f (s))dP for every f ∈ F ,

such that u : S × X → R is jointly continuous in both arguments and P is non-
atomic. Assumption 1 is replaced by the following.
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Assumption 5. Suppose that there exists
¯
x, x̄ ∈ X such that u(s, x̄) ≥ u(s, f (s)) ≥

u(s,
¯
x) for every f ∈ F and s ∈ S. Moreover, F ⊆ Cb(S, X).

Theorem 1 can be generalized as follows. For any Pn → P, let

Fn = { f Ex : f ∈ F, x ∈ {
¯
x, x̄}, E ∈ Σ,

∫
u(s, f Ax(s))dP =

∫
u(s, f (s))dPn}.

Lemma 13. For every f ∈ F and Pn → P, there exists An and xn ∈ {¯
x, x̄} such that∫

u( f Anxn(s))dP =
∫

u(s, f (s))dPn ∀n.

Moreover, P(An)→ 1.

Proof. Consider the vector measure λx : Σ→ R2 defined by

A 7→
( ∫

A
u(s, f (s))dP,

∫
A

u(s, x)dP
)

,

for x ∈ {
¯
x, x̄}. By the same reasoning as in the proof of Theorem 1, λx is non-

atomic.
Therefore, we obtain a family (Aα)α∈[0,1] such that for x ∈ {

¯
x, x̄}∫

u(s, f Aαx(s))dP = α
∫

u(s, f (s))dP + (1− α)
∫

u(s, x)dP.

By Assumption 5 ∫
u(s, f (s))dPn ∈

[ ∫
u( f )dP,

∫
u(s, x)dP

]
,

so that the result follows by the same reasoning as in the proof of Theorem 1.

Given this result, we can define preference for stability as follows (where now
the sets Fn are defined as above).

Definition 5. Consider < with representation (u, P) and a decision problem F ⊆
F . Let εn → 0. A sequence (gn)∞

n=1 = ( fnEnxn)∞
n=1 ∈ Cu,P,εn(Fn)∞

n=1 is stable if for
some optimal act f ∗ ∈ Cu,P(F) the following two conditions hold:

(i) There is a subsequence ( fnk)k such that fnk → f ∗;

(ii)
∫
‖gnk − f ∗‖dP→ 0.

52



Axiom. Consider < with representation (u, P) and fix a decision problem F ⊆ F . < has
a preference for stability if for every (Fn)∞

n=1 there exists εn → 0 and a stable sequence
(gn)∞

n=1 = ( fnEnxn)∞
n=1 ∈ Cu,P,εn(Fn).

Moreover, Theorem 4 also holds in this setting.

Lemma 14. For Pn → P, let Vn( f ) =
∫

u(s, f (s))dPn for every f ∈ F. Then for any
Pn → P

Γ- lim Vn = V

Proof. Since Vn( f ) → V( f ) for every f ∈ F, it is enough to show that for every
f ∈ F and fn → f we have

lim sup
n→∞

Vn( fn) ≤ V( f ).

Let fn → f , that is
sup
s∈S
‖ fn(s)− f (s)‖ → 0.

Consider any sn → s. Then it must be that

‖ fn(sn)− f (sn)‖ ≤ sup
s∈S
‖ fn(s)− f (s)‖.

Now by the triangle inequality,

‖ fn(sn)− f (s)‖ ≤ ‖ fn(sn)− f (sn)‖+ ‖ f (sn)− f (s)‖.

Thus fn(sn) → f (s). Now since u(·, ·) is continuous we have u(sn, fn(sn)) →
u(s, f (s)). I claim this implies that

lim sup
n→∞

∫
u(s, fn(s))dPn ≤

∫
u(s, f (s))dP.

Now recall that by Lemma 9 it holds

∫
u(s, fn(s))dPn ≤

1
K

(
1 +

K

∑
i=1

Pn(An
i )

)
,

where An
i = {s ∈ S : u(s, fn(s)) ≥ xi}, xi = m + i M−m

K , i = 1, . . . , K − 1 and
M = u(s, ). Since u(sn, fn(sn)) converges to u( f (s)), we have

Ls An
i ⊆ Ai.
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To show this, suppose that s ∈ Ls An
i . Then there exists snk → s ∈ S and u(snk , f nk(snk)) ≥

xi for every k. But then since u(snk , f nk(snk))→ u( f (s)) it follows that u(s, f (s)) ≥
xi, i.e. s ∈ Ai. This implies that Ls An

i ⊆ Ai as wanted.
Hence by Lemma 10

lim sup Pn(An
i ) ≤ P(Ai).

It follows that

lim sup
n→∞

(
1 +

K

∑
i=1

Pn(An
i )

)
≤
(

1 +
K

∑
i=1

P(Ai)

)
,

which implies the desired result.

Hence thanks to Lemma 13 and Lemma 14, we can obtain the following version
of Theorem 2 under Assumption 5.

Theorem 8. < is robust if and only it has a preference for stability.
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