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Abstract

The α-MEU model and the smooth ambiguity model are two popular models in decision making under 
ambiguity. However, the axiomatic foundations of these two models are not completely understood. We 
provide axiomatic foundations of these models in a symmetric setting with a product state space S∞. This 
setting allows marginals over S to be linked behaviorally with (limiting frequency) events. Bets on such 
events are shown to reveal the i.i.d. measures that are relevant for the decision maker’s preferences and 
appear in the representations. By characterizing both models within a common framework, it becomes 
possible to better compare and relate them.
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1. Introduction

In decision making under ambiguity, an important concern is modeling and discriminating 
between “perception” of ambiguity and ambiguity attitudes. Two popular models that have been 
described as allowing for a distinction between the two are the α-MEU model and the smooth 
ambiguity model. The α-MEU model ranks acts f according to the criterion

V (f ) = α min
p∈C

∫
u (f )dp + (1 − α)max

p∈C

∫
u (f )dp, (1)

while the smooth ambiguity model ranks acts f according to

U(f ) =
∫

φ

(∫
u(f )dp

)
μ(p). (2)

In the former, ambiguity perception is captured by the set C and attitudes are described by the 
parameter α. For the latter, the second-order measure μ captures ambiguity perception while the 
curvature of φ describes the ambiguity attitude. Part of their popularity is explained by the ability 
of separating between the two. However, the axiomatic foundations of these two models are not 
yet completely well-understood. Importantly, the fact that there is no axiomatization of the two 
models in a common framework has inhibited comparison of the two.1 Existing axiomatizations 
of the α-MEU model (e.g., Ghirardato et al., 2004; Kopylov, 2003; Gul and Pesendorfer, 2015), 
as the discussion in Section 1.1 describes, characterize different special cases of the model. The 
axiomatization of the smooth ambiguity model in Klibanoff et al. (2005) has been criticized for 
using second order acts (e.g., see the comment by Epstein, 2010 and the reply by Klibanoff et 
al., 2012). Seo’s (2009) related axiomatization did not use second order acts, but his result is not 
able to uniquely separate the function φ from the prior μ.

In this paper, we axiomatize these two models in a common framework under a symmetry 
assumption on preferences. In particular, when the state space � has the product structure � =
S∞, we axiomatize a version of the α-MEU model that takes the form

V (f ) ≡ α min
p∈{�∞:�∈D}

∫
u (f )dp + (1 − α) max

p∈{�∞:�∈D}

∫
u (f )dp, (3)

where D is a finite set of probability measures over S, α ∈ [0, 1], and u is a non-constant, affine 
utility function. In words, in this special case of the α-MEU model the set C only contains i.i.d. 
probability measures having marginal distributions contained in the set D. The smooth ambiguity 
model we axiomatize under symmetry takes the form

U(f ) =
∫

φ

(∫
u(f )d�∞

)
μ(�), (4)

where μ is a probability measure over �(S), u is a non-constant, affine utility function and φ
is continuous and strictly increasing. Furthermore, if the support of μ is not finite then φ must 
satisfy a Lipschitz-type condition.

The symmetric setting we consider is natural for many empirically grounded applications of 
ambiguity. Indeed, many economic models impose constraints on the agents’ preferences so that 

1 Epstein (2010), discussing critically the smooth ambiguity model, remarked that “However, because of its prob-
lematic foundations, the behavioral content of the model and how it differs from multiple priors, for example, are not 
clear.”
2
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they reflect some type of calibration of perceived ambiguity to external data (see e.g., Hansen 
and Sargent, 2008 for motivation and discussion). For instance, in an asset pricing model, the 
modeler may want to impose the restriction that an investor seeks to make her portfolio robust 
against only a limited set of stochastic processes that pass certain tests of inference on past data. 
Typically, such tests rest on the assumption that past and current data generating processes are 
(at least, conditionally) exchangeable, thus invoking symmetry.

To illustrate the implications of our results, we consider three thought experiments:

Consider an individual with preference � who can bet on two sources of uncertainty. The first 
is an urn with 100 balls divided in an unknown way between black balls and white balls. The 
other source of uncertainty is the return on TESLA stock. More precisely, the individual can bet 
on the results of repeated draws from the urn and repeated daily returns of the stock. The state 
space is S = ({B, W } × V )∞, where V is an interval containing the possible daily returns. The 
individual has to choose among the following bets:

(i) bets h and l, where h pays $100 if 50% to 60% of the daily returns are between 0% and 1%
and $0 otherwise, while l pays $90 if 20% to 30% of the daily returns are between 0% and 
1% and $0 otherwise;

(ii) bets H and L. Here, H pays $100 if 50% to 60% of the daily returns are between 0% and 
1% and, if neither 50% to 60% nor 20% to 30% of the daily returns are between 0% and 
1%, pays $90 if 30% to 40% of the balls drawn from the urn are black, and $0 otherwise. L
pays $90 if 20% to 30% of the daily returns are between 0% and 1% and, if neither 50% to 
60% nor 20% to 30% of the daily returns are between 0% and 1%, pays $90 if 30% to 40%
of the balls drawn from the urn are black, and $0 otherwise.

Note that in such a setting the assumption of symmetry is realistic, since the change in a stock 
price is typically modeled as i.i.d.2

Let Eh and El denote the events that 50% to 60% and 20% to 30% of the daily returns are 
between 0% and 1%, respectively, and let B be the event that 30% to 40% of the balls drawn from 
the urn are black. If an individual follows the smooth ambiguity model, h � l implies that H � L. 
This is a consequence of the smooth ambiguity model as in (4) necessarily satisfying the sure-
thing principle when restricted to bets over long-run frequencies. To see that this requirement 
forces H � L when h � l, notice that H and L are constructed from h and l by changing the 
common payoff on the event B ∩ (El ∪ Eh)c from $0 to $90. On the other hand, if an individual 
uses the α-MEU model as in (3), then the pattern of preference h � l and L � H is allowed. 
To illustrate, let u be the identity, α = 3

4 , and the set of measures, C, be {�∞
1 , �∞

2 } for some 
�1, �2 ∈ �({{B, W } × V }) with �∞

1 (Eh) = 1
2 = �∞

2 (El), �∞
1 (B) = 1 and �∞

2 (Eh) = �∞
2 (B) =

0 = �∞
1 (El). These α-MEU preferences imply that h � l and L � H , a violation of the sure-

thing principle when restricted to bets over long-run frequencies. To see that h � l, observe that 
maxp∈C p(Eh) = maxp∈C p(El) = 1

2 and minp∈C p(Eh) = minp∈C p(El) = 0, while 1
2 100 =

50 > 45 = 1
2 90. However, L � H due to the fact that L, which pays $90 if El or B ∩ (El ∪ Eh)c

occurs, provides a hedge against ambiguity, while H , which pays $100 if Eh or $90 if B ∩ (El ∪
Eh)c occurs, does not. Indeed, according to all measures in C, the event (El ∪ (B ∩ (El ∪ Eh)c)

2 More precisely, letting pt denote the price of the TESLA stock at time t , it is usually assumed that the process pt

follows a geometric Brownian motion. This implies that the process �t = log(pt ) − log(pt−1) is i.i.d.
3
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occurs with probability 1
2 , meaning that L is an unambiguous bet evaluated like a fifty-fifty 

lottery between $90 and $0. In contrast, since according to �∞
1 both Eh and B ∩ (El ∪ Eh)c

occur with probability 1
2 , while according to �∞

2 neither occurs, whether H will pay more than 
$0 is ambiguous. Since α ∗ 0 + (1 − α)( 1

2 100 + 1
2 90) = 23.75 < 45 = 1

2 90 + 1
2 0, the individual 

prefers to accept the lower payoff of $90 on El instead of $100 on Eh in exchange for this 
decrease in ambiguity.

The previous example illustrated a way in which the smooth ambiguity model is more restric-
tive than the α-MEU model when applied to bets depending on long-run frequencies. Our next 
example illustrates the reverse – a way in which the α-MEU model is more restrictive than the 
smooth ambiguity model, even when applied to bets depending on long-run frequencies. Suppose 
that the individual has to choose among the following bets:

(i) bet h, where h pays $100 if 50% to 60% of the daily returns are between 0% and 1% and $0
otherwise;

(ii) bet m, where m pays $100 if either 20% to 30% or 50% to 60% of the daily returns are 
between 0% and 1% and $0 otherwise.

If an individual follows the α-MEU model as in (3), then h � $0 and $100 � m together imply 
m ∼ h. That i.i.d. α-MEU forces this indifference can be seen using (3) as follows. Observe that 
h � $0 and (3) imply that the set D must contain at least one measure that assigns a probability 
between 0.5 and 0.6 to the event that daily returns are between 0% and 1%. Similarly, $100 � m

and (3) imply that there is a measure in the set D that assigns a probability not in [0.2, 0.3] ∪
[0.5, 0.6] to the event that daily returns are between 0% and 1%. Therefore, the value of (3)
must be the same for both h and m – as � varies over D, 

∫
f d�∞ can be as good as $100

and as bad as $0 for both f = h and f = m. This implied indifference is a special case of an 
axiom called Relevant Range that we introduce in this paper as part of the characterization of 
(3). Relevant Range requires indifference between any two acts generating the same range of ∫

f d�∞ as � varies over the set of what Klibanoff et al. (2014) characterize through preferences 
as relevant measures. To complete the connection with the example, note that in the context of 
(3), D is exactly the set of such relevant measures (Klibanoff et al., 2014, Theorem 4.1). On the 
other hand, the smooth ambiguity model as in (4) permits h � $0 and $100 � m and m � h. For 
an example, let μ assign positive weight to each of �1, �2, �3 with �∞

1 (Eh) = 1 = �∞
2 (El) and 

�∞
3 (Eh ∪ El) = 0 and φ be any continuous, increasing function.

Finally, for general acts that do not necessarily involve long-run frequency events, the α-MEU 
model excludes other types of behavior that the smooth ambiguity model does not. To illustrate, 
suppose that the individual is told that the urn contains equal numbers of black and white balls. 
Consider the following bets:

(i) bets a and b, where a pays $100 if the first draw from the urn is black and $0 otherwise, 
while b pays $100 if the first daily return is between 0% and 1% and $0 otherwise.

(ii) bets A and B , where A pays $100,000 with probability 1
2 and with the remaining probability 

pays $100 if the first draw from the urn is black and $0 otherwise. Similarly, B pays $100,000 
with probability 1

2 and with the remaining probability pays $100 if the first daily return is 
between 0% and 1% and $0 otherwise.
4
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If a � b then the α-MEU model implies A � B , whereas the smooth ambiguity model allows 
for the choice reversal B � A. Note that this reversal is consistent with diminished ambiguity 
aversion at the higher utility levels under A and B no longer being sufficient to support the 
unambiguous bet A over the ambiguous bet B . The key property of the α-MEU model that 
implies constant (both absolute and relative) ambiguity aversion, thus ruling out this behavior 
reflecting ambiguity aversion changing with utility levels, is the Certainty Independence axiom 
of Gilboa and Schmeidler (1989) (see Section 4.1 for a statement of this axiom).3 The smooth 
ambiguity model need not satisfy constant ambiguity aversion (either absolute or relative) and 
generally violates Certainty Independence (see e.g., Klibanoff et al., 2005 for discussion in this 
regard). Baillon and Placido (2019) and Berger and Bosetti (2020) provide experimental evidence 
on non-constant ambiguity aversion.

An advantage of characterizing these two models in the same framework is that it becomes 
possible to compare them on their whole domain of preferences. As we will see, the difference 
between the symmetric versions of the two models is that the α-MEU model satisfies Certainty 
Independence and Relevant Range, while the smooth ambiguity model need not, and when it 
is not expected utility, cannot. Conversely, the smooth ambiguity model must satisfy axioms of 
subjective expected utility when restricted to acts whose payoffs depend only on events based on 
limiting frequencies, while the α-MEU model need not, and cannot unless it is expected utility 
for all acts. While Certainty Independence and axioms equivalent to subjective expected utility 
are familiar from the existing literature, the Relevant Range axiom is novel to this paper.4

1.1. Related literature

The most closely related literature consists of those papers that either axiomatize versions of 
the α-MEU or smooth ambiguity models or axiomatize various preferences under symmetry con-
ditions. Consider, first, papers on the foundations of α-MEU. Ghirardato et al. (2004, Proposition 
19) characterize α-MEU under the restriction that the set C appearing in the representation (1) is 
also the unique set of probability measures appearing in the Bewley (2002) style representation 
of �∗, the largest incomplete sub-relation satisfying the Anscombe-Aumann Independence ax-
iom. However, as shown by Eichberger et al. (2011), when the state space is finite their axioms 
hold if and only if the preferences are either maxmin or maxmax (i.e., α = 0 or 1). Klibanoff et 
al. (2018, Theorem 4.5) extends this conclusion to the context of the symmetric α-MEU model, 
where the state space is S∞ and even S need not be finite. In contrast, our approach allows for 
the full range of α ∈ [0, 1], albeit only in symmetric environments. Kopylov (2003, Theorem 
2.4) characterizes α-MEU under the restriction that the set C appearing in the representation (1)
is also the set of probability measures, M0, that, when used in an expected utility representa-
tion, generate preferences agreeing with the restriction of � to the set of subjectively risky acts. 
Subjectively risky acts are those acts h such that, for all acts f, g, and all λ ∈ (0, 1),

f � g ⇐⇒ λf + (1 − λ)h � λg + (1 − λ)h

3 Note that constant ambiguity aversion here is not referring to the fact that α is constant (i.e., the same across all 
acts) in an α-MEU representation. In fact, Certainty Independence (and thus constant ambiguity aversion) holds for a 
much broader class of preferences that includes α-MEU. Ghirardato et al. (2004) call this class the Invariant Biseparable 
preferences and show they correspond to a type of α-MEU functional where α varies across acts (see also Amarante, 
2009). See Grant and Polak (2013) for a weakening of Certainty Independence that they show corresponds to constant 
absolute (as opposed to constant relative) ambiguity aversion.

4 See the comparison with axioms from Ghirardato et al. (2004) and from Kopylov (2003) in Section 4.1.
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as is required by the Anscombe-Aumann Independence axiom. This restriction has bite, in gen-
eral. However, we show (see Appendix A.4) that the α-MEU preferences we axiomatize also 
satisfy Kopylov’s (2003) axioms, implying that under preference symmetry the requirement that 
the set C equal M0 is unrestrictive. Gul and Pesendorfer (2015) axiomatize a different special 
case of α-MEU. In their model, there exists a σ -algebra E and a prior μ defined on E such that 
preferences are represented by

U(f ) = α min
π∈
μ

∫
u(f (s))dπ(s) + (1 − α) max

π∈
μ

∫
u(f (s))dπ(s),

where 
μ is the set of all probability measures that agree with μ on E . Their interpretation is that 
the individual is completely ignorant about all events that are not in E and has no ambiguity about 
events in E . Such sets 
μ differ from the sets of measures appearing in our i.i.d. α-MEU model. 
Chateauneuf et al. (2007) axiomatize a special case of Choquet expected utility that evaluates 
each act according to a convex combination of the least favorable prize, the most favorable prize 
and expected utility with respect to a fixed probability. Hill (2019) explores a generalization of 
the α-MEU model in which the individual considers a convex combination of general uncertainty 
averse and uncertainty loving preferences. Arrow and Hurwicz (1972) and Cohen and Jaffray 
(1980) study decision making under complete ignorance. They axiomatize criteria ranking acts 
based only on the worst and best payoff.

Next, we turn to the foundations of the smooth ambiguity model. Our smooth ambiguity 
model characterizations (Theorems 3 and 4) are entirely in terms of preferences over acts, but 
impose preference symmetry. An advantage relative to that in Klibanoff et al. (2005) is that their 
second order acts are not required. Two advantages relative to Seo (2009) are that failure to re-
duce objective compound lotteries is no longer implied by non-neutral attitudes to ambiguity, and 
that, given the vN-M utility function u, the function φ that models attitudes toward ambiguity is 
uniquely identified. Minardi and Savochkin (2017) characterize the special case of the smooth 
ambiguity model where φ has a negative exponential form. Al-Najjar and de Castro (2014) and 
Cerreia-Vioglio et al. (2013) use versions of symmetry, as we do, to characterize symmetric ver-
sions of the smooth ambiguity model. Compared to Al-Najjar and de Castro (2014, Theorem 
7), our results are more detailed and more clearly link the representation to a set of preference 
axioms.5 The primary contrast with Cerreia-Vioglio et al. (2013, Theorem 6) is that they take the 
set of probabilities in the support of μ as a primitive, while we derive them from preferences. Re-
cently, Denti and Pomatto (2020) characterize a version of the smooth ambiguity model in which 
the probability measures in the support of μ are identifiable. A set P of probability measures 
is identifiable if there is a function k mapping states in � to probability measures over � such 
that k(ω)({ω′ ∈ � : k(ω′) = k(ω)}) = 1 for all ω ∈ � such that k(ω) ∈ P . Observe that any sub-
set of i.i.d. measures is identifiable using the function k that associates each state with the i.i.d. 
measure corresponding to the limiting frequency of that state. Thus the smooth ambiguity model 
characterized in this paper is a specialization of that in Denti and Pomatto (2020). However, they 
neither characterize this specialization nor address α-MEU.

5 First, they do not specify which expected utility axioms the preference has to satisfy for acts measurable with respect 
to long-run frequency events. As shown in our Theorems 3 and 4, different sets of expected utility axioms not only have 
different implications for restrictions on the prior μ but also for the function φ. Second, they assume that the support of 
μ contains only countably additive measures. They do not specify the behavioral content of this assumption. We show 
that the corresponding behavioral property is monotone continuity of �∗ . Finally, since μ itself is countably additive in 
their representation, one can show that their continuity axiom on preferences implies that φ must be continuous in their 
representation, but this restriction is not reflected in their analysis or result.
6
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Finally, our paper builds on the literature using preference symmetry conditions to explore 
ambiguity. In particular, Klibanoff et al. (2014) forms the starting point of our analysis. In turn, 
it is part of a broader literature generalizing the approach to symmetry pioneered by de Finetti 
(1937) and Hewitt and Savage (1955). Some of the most relevant references here include Epstein 
and Seo (2010, 2011), the aforementioned Al-Najjar and de Castro (2014) and Cerreia-Vioglio 
et al. (2013), and Klibanoff et al. (2018).

1.2. Organization of the paper

Section 2 introduces notation and the main choice-theoretic objects used in the paper. In sec-
tion 3 we recall a useful result from Klibanoff et al. (2014) that constitutes the starting point of 
our analysis. Section 4 contains our main results. Section 5 has some discussion and concludes. 
Section A is an appendix containing all the proofs and some additional results.

2. Setting and notation

We borrow our notation from Klibanoff et al. (2014). Consider a compact metric space S. 
The state space is given by � = S∞, with generic element ω = (ω1,ω2, ...). Observe that, by 
well-known results, � is also a compact metric space. Denote by �i the Borel σ -algebra on the 
i-th copy of S, and by � the product σ -algebra on S∞. Let X be the set of lotteries (i.e., finite 
support probability measures on an outcome space Z). An act is a simple Anscombe-Aumann act, 
a measurable f : S∞ → X having finite range (i.e., f (S∞) is finite). The set of acts is denoted 
by F , and � is a binary relation on F ×F (∼ and � denote the symmetric and asymmetric part, 
respectively). As usual, we identify a constant act with the element of X it yields.

Denote with 
 the set of all finite permutations on {1,2, ...} i.e., all one-to-one and onto 
functions π : {1,2, ...} → {1,2, ...} such that π(i) = i for all but finitely many i ∈ {1,2, ...}. For 
π ∈ 
, let πω = (

ωπ(1),ωπ(2), ...
)

and (πf ) (ω) = f (πω).
For any topological space Y , let � (Y ) denote the set of (countably additive) Borel probability 

measures on Y . ba (Y ) is the set of finitely additive bounded real-valued set functions on Y , 
and ba1+ (Y ) the set of non-negative probability charges in ba (Y ). A measure p ∈ � (S∞) is 
called symmetric if the order doesn’t matter, i.e., p (A) = p (πA) for all π ∈ 
, where πA =
{πω : ω ∈ A}. Denote by �∞ the i.i.d. measure with the marginal � ∈ � (S). Define 

∫
S∞ f dp ∈ X

by 
(∫

S∞ f dp
)
(B) = (∫

S∞ f (ω) (B)dp (ω)
)
. (Since f is simple, this is well-defined.) We endow 

� (S), � (�(S)) and � (S∞) with the relative weak* topology.6 For a set D ⊆ �(S), D denotes 
the closure of D in the relative weak* topology.

Fix x∗, x∗ ∈ X such that x∗ � x∗. For any event A ∈ �, 1A denotes the act giving x∗ on A
and x∗ otherwise. Informally, this is a bet on A. A finite cylinder event A ∈ � is any event of the 
form {ω : ωi ∈ Ai for i = 1, ..., n} for Ai ∈ �i and some finite n. More generally, given f, g ∈ F
and A ∈ �, f Ag denotes the act that yields f (s) for s ∈ A and g(s) for s /∈ A. For a measurable 
partition (Ai)

m
i of S and lotteries (xi)

m
i=1, we denote with f = ∑m

i=1 xi1Ai
the act that yields xi

for s ∈ Ai . An event A ∈ � is null if f Ag ∼ g for all acts f, g ∈ F .
The support of a probability measure m ∈ � (�(S)), denoted suppm, is a relative weak* 

closed set such that m 
(
(suppm)c

) = 0 and if G ∩ suppm �= ∅ for relative weak* open G, 

6 To see what this is, consider, for example, � (S). The relative weak* topology on � (S) is the collection of sets 
V ∩ � (S) for weak* open V ⊆ ba (S), where the weak* topology on ba(S) is the weakest topology for which all 
functions � �−→ ∫

ψd� are continuous for all bounded measurable ψ on S.
7
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m (G ∩ suppm) > 0. Let �n (ω) ∈ � (S) denote the empirical frequency operator defined by 
�n (ω) (A) = 1

n

∑n
t=1 I (ωt ∈ A) for each event A in S. Define the limiting frequency operator 

� by � (ω) (A) = limn �n (ω) (A) if the limit exists and 0 otherwise. Also, to map given limit-
ing frequencies or sets of limiting frequencies to events in S∞, we consider the natural inverses 
�−1 (�) = {ω : �(ω) = �} and �−1 (L) = {ω : �(ω) ∈ L} for � ∈ � (S) and L ⊆ � (S).

Finally, we denote by �� the σ -algebra generated by the open (in the weak* topology) sets 
in �(S). Let �� denote the σ -algebra generated by the collection of sets {�−1(L) : L ∈ ��}. 
Denote by F� the set of simple acts measurable with respect to ��.

3. Symmetry and Relevance

We next recall axioms and a key definition from Klibanoff et al. (2014). Consider the follow-
ing axioms on � which will be common to both models. The first five are standard axioms in an 
Anscombe-Aumann framework.

Axiom 1. � is complete and transitive.

Axiom 2 (Monotonicity). If f (ω) � g(ω) for all ω ∈ S∞, f � g.

Axiom 3 (Risk Independence). For all x, x′, x′′ ∈ X and α ∈ (0, 1), x � x′ if and only if αx +
(1 − α)x′′ � αx′ + (1 − α)x′′.

Axiom 4 (Non-triviality). There exist x, y ∈ X such that x � y.

Axiom 5 (Mixture Continuity). For all f, g, h ∈F , the sets {λ ∈ [0, 1] : λf + (1 − λ)g � h} and 
{λ ∈ [0, 1] : h � λf + (1 − λ)g} are closed in [0, 1].

The last two shared axioms are written in terms of the binary relation �∗ derived from � as 
follows (see Ghirardato et al., 2004): for every f, g ∈ F ,

f �∗ g if αf + (1 − α)h � αg + (1 − α)h for all α ∈ [0,1] and h ∈ F .

The next axiom says that the coordinates of S∞ are viewed as interchangeable. Event Sym-
metry is the main condition that enables our representation results. Thanks to this assumption, 
acts in F� will be able to play the role that second-order acts did in Klibanoff et al.’s (2005, 
Theorems 1 and 4) axiomatization of the smooth ambiguity model, and the set D ⊆ �(S) in 
the i.i.d. α-MEU representation is able to be uniquely identified without restrictions on α (see 
Section 4).

Axiom 6 (Event Symmetry). For all finite cylinder events A ∈ � and finite permutations π ∈

, 1A ∼∗ 1πA.

A natural notion of symmetry, as expressed through preferences, is that the decision maker 
is always indifferent between betting on an event and betting on its permutation. The use of 
the term “always” here means at least that this preference should hold no matter what other act 
the individual faces in combination with the bet. In an Anscombe-Aumann framework such as 
ours, this may be expressed by the statement α1A + (1−α)h∼α1πA + (1−α)h for all α∈[0, 1]
and all acts h, which is precisely 1A ∼∗ 1πA. For preferences satisfying the usual independence 
8
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axiom, 1A ∼∗ 1πA is equivalent to 1A ∼ 1πA. As a main goal of our analysis is to accommodate 
preferences that violate independence, we cannot substitute the former with the latter.

The remaining shared axiom is a continuity requirement on �∗:

Axiom 7 (Monotone Continuity of �∗). For all x, x′, x′′ ∈ X, if x′ � x′′ and events (An)
∞
n=1 are 

such that Ai−1 ⊇ Ai for every i and ∩∞
n=1An = ∅, then x′ �∗ xAnx

′′ for some n.

In addition to these axioms, we also borrow from Klibanoff et al. (2014) a key definition. 
Define a relevant measure as a marginal distribution, �, on S that matters for preferences in 
the following sense: For each open set of marginal distributions, L, containing �, we can find 
two acts, f and g, that yield the same distribution over outcomes as each other under all i.i.d. 
distributions generated by marginals not in L and yet the individual strictly prefers f over g.

Let O� denote the set of open subsets of �(S) that contains �. The use of these open neigh-
borhoods in the definition is required only because � (S) is infinite. The formal definition is:

Definition 1. A measure � ∈ �(S) is relevant according to preferences � if for any L ∈O�, there 
are f, g ∈ F such that f � g and 

∫
f d�̂∞ = ∫

gd�̂∞ for all �̂ ∈ �(S)\L. The set of relevant 
measures for preferences � is denoted by R(�).

Given � satisfying Axioms 1–7, R(�) is unique. R(�) is endogenous in that it is defined 
from, and hence varies with, the primitive, �.

To better understand the relationship between preferences and the corresponding R(�), con-
sider the following result showing that a marginal � ∈ �(S) is a relevant measure if and only 
if, for each open neighborhood containing it, the corresponding limiting frequency event is non-
null according to preferences. In reading it, recall that, for A ⊆ � (S), �−1 (A) is the event that 
limiting frequencies over S lie in A.

Theorem 1. (Klibanoff et al. 2014, Theorem 3.2) Assume � satisfies Axioms 1–7. For � ∈ � (S), 
� /∈ R(�) if and only if, for some L ∈ O�, �−1 (L) is a null event according to �. Moreover, 
R(�) is closed.

When R(�) is finite, the same result holds without the use of neighborhoods, i.e., �−1 (�) is 
null according to � if and only if � /∈ R(�). Theorem 1 justifies thinking of R(�) as the unique 
set of marginals subjectively viewed as possible, since the individual behaves as if only those 
outside of R(�) are impossible. Note the role of Axioms 1–7 (especially the Event Symmetry 
axiom): they allow marginals over S to be identified behaviorally with (limiting frequency) events 
in S∞. Given that perceived ambiguity is subjective uncertainty about probability assignments, 
under Axioms 1–7 the relevant measures are the probability assignments revealed to be in the 
support of that uncertainty. In other words, relevant measures are those corresponding to non-null 
limiting frequency events.

In the next section we will provide axioms that, together with Axioms 1–7, are equivalent to 
the α-MEU and smooth ambiguity representations as in (3) and (4).
9
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4. Using Event Symmetry and Relevance to provide foundations for the two decision 
models

In this section, we characterize the α-MEU and smooth ambiguity models under our symmetry 
and continuity assumptions.

4.1. α-MEU model

We will show that under Axioms 1–7, α-MEU is what results from strengthening Risk Inde-
pendence to Gilboa and Schmeidler’s (1989) Certainty Independence (stated below) and adding 
an axiom making use of the following set:

C∗(f ) ≡ {x ∈ X : x �
∫

f d�∞ for some � ∈ R(�)

and
∫

f d�∞ � x for some � ∈ R(�)}.
The set C∗(f ) consists of the lotteries that (in terms of preference) lie in the range of lotter-
ies induced by f under the i.i.d. measures generated from relevant measures (i.e., between the 
best and worst lotteries formed by using �∞ for � ∈ R(�) to weight the outcomes of f ). The 
new axiom needed to characterize α-MEU says that if two acts have the same sets C∗ then the 
individual must be indifferent between them.

Axiom 8 (Relevant Range). For all f, g ∈ F , C∗(f ) = C∗(g) implies f ∼ g.

We also need the following strengthening of Risk Independence, introduced by Gilboa and 
Schmeidler (1989),

Axiom 9 (Certainty Independence). For all f, g ∈ F , x ∈ X and α ∈ (0,1), f � g if and only if 
αf + (1 − α)x � αg + (1 − α)x.

Notice that Certainty Independence remains weaker than the following standard Independence 
axiom (which would lead to SEU):

Axiom 10 (Independence). For all f, g, h ∈ F , and α ∈ (0,1), f � g if and only if αf +
(1 − α)h � αg + (1 − α)h.

The next result shows that Axioms 1–7, when strengthened by adding Relevant Range and 
replacing Risk Independence with Certainty Independence, characterize the α-MEU model in 
(3).

Theorem 2. � satisfies Relevant Range and Axioms 1–7 with Risk Independence replaced by 
Certainty Independence if and only if R(�) is finite and there is a non-constant vNM utility 
function u and an α ∈ [0, 1] such that

V (f ) ≡ α min
p∈{

�∞:�∈R(�)
}
∫

u (f )dp + (1 − α) max
p∈{

�∞:�∈R(�)
}
∫

u (f )dp, (5)

represents �.
10
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Furthermore, for any non-constant vNM utility function û, α̂ ∈ [0, 1] and finite set D ⊆ �(S), 
the preferences �̂ represented by

V̂ (f ) ≡ α̂ min
p∈{�∞:�∈D}

∫
û (f ) dp + (1 − α̂) max

p∈{�∞:�∈D}

∫
û (f ) dp, (6)

satisfy Relevant Range and Axioms 1–7 with Risk Independence replaced by Certainty Inde-
pendence. Moreover, R(�̂) = D. Finally, two functionals of the form in (6) represent the same 
preferences if and only if they have the same set D, the utility functions are related by a positive 
affine transformation, and, if D is non-singleton, they have the same α̂.

This characterizes the α-MEU model, albeit limited to symmetric environments and finitely 
generated sets of countably additive measures.7 Our uniqueness results ensure that the set of 
measures and α are meaningful. The representation in (5) shows how the set of measures in i.i.d. 
α-MEU is related to the endogenous set of relevant measures R(�). This way of writing the 
representation is analogous to the α-MEU representations in Ghirardato et al. (2004, Proposition 
19) and Kopylov (2003, Theorem 2.4) in that they also write the set of measures in terms of 
an endogenous construct – the Bewley set C in the case of Ghirardato et al. (2004) and the set 
M0 in the case of Kopylov (2003) (recall the description of these sets from Section 1.1). Any 
representation in which the set of measures is tied to such an endogenous construct raises the 
question of which actual sets of measures and parameters α are consistent with at least some 
preference satisfying the given axioms. The contribution of the second part of Theorem 2 with 
representation (6) is to show that for i.i.d. α-MEU the fact that the set of measures must be 
generated by R(�) is unrestrictive – any finite set of marginals, D, together with any α ∈ [0, 1]
generates a preference satisfying the axioms, making it clear that the entire class of i.i.d. α-MEU 
representations (3) is what the axioms characterize.

In applications, it is often desirable to model an agent who has some particular finite set 
of probability measures in mind along with a particular α. It follows from Theorem 2 that any 
combination of the two is consistent with the axioms, and so, in that sense, they are indeed free to 
be separately specified. In contrast, Ghirardato et al. (2004) and Kopylov (2003) do not provide 
results analogous to the second part of our Theorem 2. As was discussed in Section 1.1, in fact, 
under either symmetry or a finite state space, Ghirardato et al.’s (2004) characterization is limited 
to cases where α is 0 or 1. Kopylov (2003, p. 91) pointed out that it is easy to find combinations 
of sets of measures and αs violating his axioms. As an additional contribution of our analysis 
(see Appendix A.4), we show that under symmetry an analogous result does hold for Kopylov’s 
theory: all i.i.d. α-MEU representations satisfy Kopylov’s axioms.

It is worth noting that Ghirardato et al.’s (2004) Axiom 7 is similar to Relevant Range except 
that it uses the range generated by measures in the Bewley set C(�) rather than measures in 
R(�). Importantly, while R(�) does not depend on α, the set C(�) does. That R(�) is inde-
pendent of α can be seen from the facts that (a) whether an event is non-null is independent of α, 
and (b) as shown in Theorem 1, R(�) is fully determined by which limiting-frequency events are 
non-null according to �. In contrast, the Bewley set C(�) in Ghirardato et al.’s (2004) Axiom 
7 uses not just preference information about on which events utility has value (i.e., which events 
are non-null), but also information about the relative magnitudes of those valuations (i.e., how 

7 The proof reveals that finiteness of R(�) results from a tension between Monotone Continuity of �∗ (which is the 
main force ensuring countable additivity) and the conjunction of Relevant Range and Certainty Independence (which are 
the main drivers ensuring the α-MEU form).
11
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preferences trade-off utility across different non-null events). Mathematically, according to their 
Theorem 14, the Bewley set C(�) is the Clark differential of the representing functional at the 
constant utility 0. Since this Clark differential of the α-MEU functional depends on α, so must 
C(�).

Given an i.i.d. α-MEU representation, preferences will satisfy Relevant Range with respect 
to the set of measures appearing in the representation. Except when α is 0 or 1 or the set of 
measures in the representation is a singleton, the Bewley set C(�) will not be equal to the set 
of measures appearing in the α-MEU model, and thus Ghirardato et al.’s (2004) Axiom 7 will 
not hold. Combining Ghirardato et al. (2004, Proposition 19), our Theorem 2, and Theorems 
4.2 and 4.5 in Klibanoff et al. (2018), if Relevant Range were replaced by their Axiom 7, then 
either α is 0 or 1 or the set of measures in the representation is a singleton. That is, under their 
Axiom 7, � must be MEU or max-max EU, in which cases the earlier characterization results of 
Gilboa and Schmeidler (1989) already apply. In this sense, our result shows that in a symmetric 
environment, the difference between the α-MEU model and the union of the MEU and max-
max EU models is exactly the difference between Relevant Range and Ghirardato et al.’s (2004)
Axiom 7. Recall that the key role of symmetry in the process is in allowing for the relevant 
measures to be identified from non-nullity of events in the state space �.

Another counterpart to Relevant Range is the Partial Ignorance outside of the Subjectively 
Risky Acts axiom in Kopylov (2003) (recall his notion of subjectively risky act from our dis-
cussion in Section 1.1). The axiom itself is complex to state, but has the following spirit: if the 
ranking over subjectively risky acts plus the implications of Completeness, Transitivity, Mono-
tonicity and Certainty Independence do not force one to conclude that f � g or g � f , then the 
axiom requires that f ∼ g.

We observe that the Relevant Range axiom can also be related to two key axioms (called 
Property B and Property C) in Arrow and Hurwicz (1972) (that they attribute to Chernoff (1954)). 
Property B states that relabeling of actions and states of nature should be deemed irrelevant by 
the individual. Property C requires that for a given decision problem, if a state gives the same 
payoff as another state for every action in the decision problem, then the state can be removed 
without influencing the optimal action for the decision problem. Together with a monotonicity 
assumption, these two properties imply that if two actions have the same range of payoffs then 
they should be deemed equivalent by the individual. As they argue, this last property is a way 
to model decision making under “complete ignorance”, i.e. that there is no a priori information 
available which gives any state of nature a distinguished position. Similarly, our Relevant Range 
axiom reflects the idea that beyond whether a frequency is relevant or not there is “complete 
ignorance” over such relevant frequencies.

Finally, it is useful to know which i.i.d. α-MEU preferences are also subjective expected utility 
preferences (i.e., also satisfy the Independence axiom). The following result gives the overlap:

Proposition 1. Consider a preference relation � represented by (6). The preference satisfies 
Independence if and only if either D is a singleton or D has two elements and α = 1

2 .

4.2. Smooth ambiguity model

We provide two different foundations for the smooth ambiguity model building on Ax-
ioms 1–7. The main idea is to additionally impose expected utility axioms on a subclass of acts, 
those measurable with respect to events defined by empirical frequency limits, i.e., the acts in 
F�. Recall that F� denotes the set of simple acts that are measurable with respect to events in 
12
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��, i.e., long-run frequency events. Before proceeding, it is important to point out that imposing 
expected utility axioms on F� does not imply that the individual views events in �� as unam-
biguous nor that the individual is ambiguity neutral when evaluating such acts.8 A final, more 
technical addition is a Cauchy continuity axiom important in ensuring the existence of a mono-
tonic and norm-continuous extension of preferences from the simple acts, F , to the bounded acts, 
F̂ , which is used in connecting preferences on F� to preferences on all simple acts. What dif-
ferentiates the two characterizations is the axioms imposed on preferences restricted to F�. The 
first characterization uses the famous axioms from Savage (1954) which have great familiarity, 
simplicity and transparency, at the cost of requiring that the measure μ in the representation is 
non-atomic.9 The second characterization allows for the important possibility of μ having gen-
eral finite or infinite support by substituting axioms from Wakker (1989, Theorem V.6.1), the 
main one being a tradeoff consistency axiom, for those of Savage.

Start by considering the following version of Savage’s postulates for acts in F�.10

P2 For every f, g, h, h′ ∈F� and A ∈ ��,

f Ah� gAh =⇒ f Ah′ � gAh′.
As usual, A ∈ �� is null if for every f, g ∈ F�, f Ag ∼ g, otherwise it is non-null.

P3 For every x, y ∈ X, f, g ∈ F�, and non-null A ∈ ��,

x � y ⇐⇒ xAf � yAg.

P4 For every A, B ∈ �� and x, y, x′, y′ ∈ X such that x � y and x′ � y′,

xAy � xBy =⇒ x′Ay′ � x′By′.
P6 For every f, g ∈ F� and x ∈ X such that g � f , there exists a ��-measurable partition 

(Ai)
n
i=1 of � such that for every i = 1, . . . , n, g � xAi

f and xAi
g � f .

As in Savage, a key implication of P6 is that μ is non-atomic. Additionally, the following con-
tinuity axiom is used to ensure countable additivity of μ and continuity of φ. Given a sequence 
(f )∞n=1 of acts, write fn → f if for every act g, g � f implies that there exists N such that 
n ≥ N =⇒ g � fn and f � g implies that there exists N ′ such that n ≥ N ′ =⇒ fn � g.

Axiom 11 (Pointwise Continuity). For every sequence (fn)
∞
n=1 in F� such that for some x, y ∈ X

x � fn(ω) � y for every ω ∈ �, fn(ω) → f (ω) for every ω ∈ � implies fn → f .

Our final axiom is the Cauchy continuity requirement. Let F̂ denote the set of all bounded 
and measurable functions from � to X.11 Ghirardato and Siniscalchi (2010) propose a notion 

8 We discuss and illustrate this in Section 5.2.
9 In Appendix A.7, we show that by weakening Savage’s P6, the same approach can be extended to allow μ that are 

only partially non-atomic – in particular, μ may assign up to half its weight to atoms. Note that this still completely rules 
out discrete measures or measures with finite support.
10 Axioms 1 and 4 already provide Savage’s postulates P1 and P5, and so we do not repeat those here.
11 More precisely, F̂ is the collection of functions f : � → X that satisfy the following two properties:

(i) for all x ∈ X, {ω : f (ω) � x} ∈ �; and
(ii) there exist x, y ∈ X such that x � f (ω) � y for all ω ∈ �.
13
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of convergence that they show corresponds to sup-norm convergence in the space of utility acts. 
Following them, we say fk ∈ F̂ norm-converges to f ∈ F̂ if for all x, y ∈ X with x � y, there 
exists K such that k ≥ K implies for all ω ∈ �

1
2f (ω) + 1

2y ≺ 1
2fk (ω) + 1

2x and 1
2fk (ω) + 1

2y ≺ 1
2f (ω) + 1

2x.

Ghirardato and Siniscalchi (2010) propose the following continuity condition using norm-
convergence:

Axiom 12 (Cauchy Continuity). Consider sequences fk ∈ F , xk ∈ X such that fk norm-
converges to f ∈ F̂ . If fk ∼ xk for all k, then there exists x ∈ X such that xk norm-converges to 
x.

We are ready to state our first representation theorem for the smooth ambiguity model.

Theorem 3. � satisfies Axioms 1–7, P2-P4, P6, Pointwise Continuity and Cauchy Continuity if 
and only if there is a non-constant vNM utility function u : X → R, a strictly increasing con-
tinuous function φ : u(X) → R such that there are m, M > 0 with m|x − y| ≤ |φ(x) − φ(y)| ≤
M|x − y| for every x, y ∈ u(X) and a non-atomic Borel probability measure μ ∈ �(�(S)) such 
that

U(f ) =
∫

�(S)

φ

(∫
u(f )d�∞

)
μ(�),

represents �. Moreover, μ is unique, R(�) = suppμ, u is unique up to a positive affine trans-
formation, and, given a normalization of u, φ is unique up to positive affine transformations.

Note that the Lipschitz style restriction m|x − y| ≤ |φ(x) − φ(y)| ≤ M|x − y| is only needed 
to guarantee Monotone Continuity of �∗.12

Next we provide the axiomatization relying on Wakker’s Tradeoff Consistency and S-
continuity axioms. To apply Wakker (1989, Theorem V.6.1) we need to specify a topology on X. 
For this purpose, assume that Z is a metric space that is complete and separable.13 Endow X with 
the weak convergence (wc) topology. The wc topology on X is the weakest topology for which 
all functions x �−→ ∫

ψdx are continuous for all bounded continuous ψ on Z. Also note that a 
sequence xn ∈ X converges to x ∈ X under the wc topology if and only if 

∫
ψdxn → ∫

ψdx for 
all bounded continuous ψ on Z. Under this topology, X is a connected topological space.

Axiom 13 (Tradeoff Consistency). There are no non-null events A, B ∈ ��, consequences 
w, x, y, z ∈ X and acts f, g ∈ F� such that xAf � yAg, zAf � wAg, xBf � yBg and 
wBg � zBf .

Axiom 14 (S-continuity). For every partition of � into a finite number of events in ��, (Ai)
m
i=1, 

and act f = ∑m
i=1 xi1Ai

, the sets 
{
(yi)

m
i : ∑m

i=1 yi1Ai
� f

}
and 

{
(yi)

m
i : f �

∑m
i=1 yi1Ai

}
are 

closed in the product topology of Xm.

12 In this respect, we see that any tension between Monotone Continuity of �∗ and the expected utility axioms imposed 
on acts measurable with respect to limiting frequency events can be resolved through conditions on φ rather than by 
being forced to limit the richness of the set of relevant measures as was the case for α-MEU in Theorem 2.
13 Recall that X is the set of all lotteries over the set Z.
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Our representation theorem for the smooth ambiguity model allowing for general μ is:

Theorem 4. � satisfies Axioms 1–7, S-continuity, Cauchy Continuity and Tradeoff Consistency 
if and only if there is a non-constant wc-continuous vNM utility function u, a strictly increasing 
continuous function φ : u(X) → R and a Borel probability measure μ ∈ �(�(S)) such that

U (f ) =
∫

�(S)

φ

⎛⎝ ∫
S∞

u (f )d�∞
⎞⎠dμ(�) , (7)

represents � and either (i) there are m, M > 0 such that m |a − b| ≤ |φ (a) − φ (b)| ≤ M |a − b|
for all a, b ∈ u (X) or, (ii) suppμ is finite. Moreover, μ is unique, R(�) = suppμ, u is unique 
up to positive affine transformations, and, given a normalization of u, if suppμ is non-singleton, 
then φ is unique up to positive affine transformations.

Note that the restriction that (i) or (ii) holds is solely to ensure Monotone Continuity of �∗, 
and is a combination of the conditions having the same purpose in Theorems 2 and 3.

In both smooth ambiguity representation theorems, μ is uniquely determined by expected 
utility preferences over “frequency acts” (i.e., ��-measurable acts) and thus, it expresses beliefs 
over the events in �� in the same sense as the prior in an expected utility representation. Fur-
thermore, the support of μ is exactly the set of relevant measures. Notice that φ is unique up to 
positive affine transformations only given a normalization of u. Should one worry that normal-
ization of u is needed to pin down φ, and thus to pin down ambiguity attitude? The answer is 
no. Expected utility preferences over monetary lotteries have their risk aversion as measured by 
the Arrow-Pratt index depend on the currency used to denominate money. This in no way means 
that risk attitudes are non-unique. Similarly, the Arrow-Pratt index of φ, identified by Klibanoff 
et al. (2005) as measuring ambiguity attitude, depends on the units used to measure utility, and 
this does not affect the unique identification of ambiguity attitudes.

Theorems 3 and 4 provide foundations for the smooth ambiguity model using the Event Sym-
metry requirement. There are close analogies to the smooth ambiguity representation theorems 
in Klibanoff et al. (2005) and Seo (2009) with the additional assumption that the environment is 
known to be symmetric. For all these approaches, the key assumptions are (1) conditions equiv-
alent to expected utility over lotteries, (2) conditions equivalent to expected utility over acts in 
F� (resp. second order acts in Klibanoff et al. (2005) and lotteries over acts in Seo (2009)) and 
(3) Event Symmetry. In particular, Event Symmetry permits the identification of acts in F� with 
maps from probability measures in �(S) to consequences in X. In this sense, Event Symme-
try plays the same role as Klibanoff et al.’s (2005) Consistency and Seo’s (2009) Dominance. 
A formal connection between Event Symmetry and these two axioms is discussed in Klibanoff 
et al. (2018, pp. 37-39). In particular, conditions (vii) and (viii) in their Theorem 3.1 (reported 
as Theorem 5 in our Appendix A.1) show how Event Symmetry is equivalent in this context to 
Dominance and Consistency, respectively. Moreover, our representation results show how, in a 
symmetric setting, objects like second order acts or lotteries over acts can be replaced by partic-
ular standard acts related to frequencies. See the discussions in Klibanoff et al. (2005, pp. 1854 
and 1856), (2009, p. 937) for the idea that objects like second order acts could, with enough 
invariance, be replaced by acts based on long run outcomes of repeated trials.

Finally, we provide a counterpart to Proposition 1, and characterize the overlap between the 
smooth ambiguity preferences in (7) and subjective expected utility preferences:
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Proposition 2. Consider a preference relation � represented by (7). The preference satisfies 
Independence if and only if either the support of μ is a singleton or φ is linear.

5. Conclusion and discussion

In recent decades, many models have emerged in pure and applied economic theory according 
to which agents’ choices may be sensitive to ambiguity. Several papers have tried to discrimi-
nate among various of these models empirically (among many others, see Cubitt et al. (2020)
and Baillon and Bleichrodt (2015)). Moreover, symmetry assumptions are often in the back-
ground when analyzing such experimental data. The α-MEU and smooth ambiguity models are 
two popular alternatives used in applications. By axiomatizing these two models in a common 
framework, our work can help in understanding and discriminating between them. As we have 
shown, under symmetry the difference between the two models is exactly that the α-MEU model 
satisfies Certainty Independence and Relevant Range for all acts while the smooth ambiguity 
model satisfies axioms of subjective expected utility restricted to acts measurable with respect 
to long-run frequency events. In contrast, when restricted to the latter acts, i.i.d. α-MEU reduces 
to a representation of preferences under complete ignorance proposed by Hurwicz (1951) (see 
also Arrow and Hurwicz, 1972) when the state space is taken as equal to the set of relevant 
measures14:

V (f ) ≡ α min
�∈R(�)

u(f ) + (1 − α) max
�∈R(�)

u(f ). (8)

The introduction included some thought experiments illustrating aspects of these differences, 
both for frequency acts and more general acts.

5.1. Bets on frequency limits

Our axiomatizations make heavy use of the infinite product structure of the state space, 
S∞ = S × S . . . × S . . .. Because infinitely many experiments cannot be performed, one may 
argue that the acts in F� are not fully operational. First, we note that the practice of using acts 
that may require infinite data to determine their realization is ubiquitous in decision theory. For 
example, in Savage’s subjective expected utility theory with a continuum of states, observing the 
realized state will in general require uncountably infinite data. Moreover, we argue that this type 
of experiment is already effectively operationalized in economics. For example, in the experi-
mental literature that studies learning in games, a focus is to understand whether play converges 
to a Nash equilibrium (see for example Chen and Gazzale, 2004). This is usually tested by fixing 
a long time horizon and looking at whether a high number of players repeatedly play the Nash 
profile. Another example is related to the experimental literature that tests theoretical predictions 
of bargaining models. Since the main bargaining models adopt an infinite horizon, again in ex-
periments one has to use a long enough time horizon (e.g., see Weg et al., 1990). Both these cases 
rely on the idea that an infinite horizon model can be approximated with arbitrary precision by 
one with finite horizon. Such an idea can be captured in our framework as follows. Consider the 
simple case of coin tossing, i.e. S = {H, T } (so that �(S) = [0, 1]) and consider finitely many 
coin tosses, i.e. � = {H, T }N with N < ∞. There are two difficulties. First, symmetry is not 

14 Since these acts are measurable with respect to limiting frequency events, u(f ) evaluated at � ∈ �(S) is well-defined 
and equal to u(f (�−1(�))).
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equivalent to mixture of i.i.d. measures, as discussed by Diaconis (1977); Diaconis and Freed-
man (1980). Second, �−1

N (�) is empty whenever � ∈ [0, 1] is not a rational number. However, as 
shown by Diaconis and Freedman (1980), any symmetric probability can be approximated by a 
mixture of i.i.d. measures. Furthermore, the event �−1

N (�) with � irrational can be approximated 
with N large enough.

5.2. Ambiguity of long-run frequency events

As stated in Section 4.2, the fact that the smooth ambiguity model under symmetry satisfies 
the axioms of expected utility on F� does not imply that the individual views events in ��

(i.e., long-run frequency events) as unambiguous or treats them as such. Such an observation 
is related to a phenomenon known as source preference (see Abdellaoui et al. 2011, p. 696 for 
a discussion of the literature). Sources of uncertainty are groups of events that are generated 
by the same mechanism of uncertainty. As demonstrated by Chew and Sagi (2008), one can 
have probabilities within sources even when probabilistic sophistication does not hold between
sources. In this case, even if the smooth ambiguity model satisfies the sure-thing principle for 
bets on frequency events, this does not mean that bets on such events are treated in the same way 
as purely risky bets.

To illustrate, consider the following example. Take any non-null long-run frequency event 
E ∈ �� and assume smooth ambiguity preferences represented as in (4). Let m = μ(�−1(E))

with 0 < m < 1. Take x, y ∈ X such that u(y) = 0, u(x) = 1 and assume that φ is strictly concave 
with φ(0) = 0. The smooth ambiguity model evaluates the bet xEy as mφ(1), and the bet xEcy

as (1 − m)φ(1). For any p ∈ [0, 1] and x, y ∈ X, denote by xpy ∈ X the lottery that pays x with 
probability p and y with probability 1 −p. Now consider the lotteries xpy and x(1 −p)y. These 
are evaluated as φ(p) and φ(1 − p), respectively. Let pE and pEc

be such that xpEy ∼ xEy

and xpEc
y ∼ xEcy. By strict concavity of φ, it follows that pE < m and m < 1 − pEc

. In other 
words, in terms of betting on such frequency events, the decision maker behaves as if his second 
order belief μ, the subjective belief about the i.i.d. measures in the set �−1(E), matches an 
interval of probabilities, 

[
pE,1 − pEc]

, rather than the precise point m = μ 
(
�−1(E)

)
, and this 

interval is wider the greater the ambiguity aversion. For example, if φ(x) = 1
a
(1 − e−ax), then as 

a → ∞ we have that pE → 0 and 1 − pEc → 1.15

To formalize this point, we apply the preference-based definition of unambiguous events given 
by Klibanoff et al. (2005, Definition 7). In the present setting, their definition can be translated 
as follows:

Definition 2. An event E ⊆ � is unambiguous for the preference � with a smooth ambiguity 
representation if, for each x, y ∈ X and p ∈ [0, 1] such that x � y either [xEy � xpy and yEx ≺
ypx] or [xEy ≺ xpy and yEx � ypx] or [xEy ∼ xpy and yEx ∼ ypx]. An event is ambiguous 
if it is not unambiguous.

For instance, in the previous example we had pE < m and m < 1 − pEc
, so that xpy � xEy

and yEx � ypx, which implies that event E is ambiguous. More generally, using arguments 
from Klibanoff et al. (2012, Section 2.4) it can be shown that all the (non-null and non-universal) 

15 Indeed, pE = − log(1 − m(1 − e−a)))/a and 1 − pEc = (log(m − e−a)(m − 1)) + a)/a.
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events concerning the frequencies of ambiguous events will themselves be treated as ambiguous 
by the smooth ambiguity model under symmetry.

Appendix A. Proofs and additional results

Denote by B0 (S,K) the set of simple functions defined on S with range contained in an 
interval K . The set B0 (�(S) ,u(X)) is defined analogously, where � (S) is endowed with the 
Borel σ -algebra generated by the weak topology.

A.1. Preliminaries

We first report a result from Klibanoff et al. (2018) that will be useful in the main proofs. This 
result shows that Event Symmetry relates quite closely to a variety of other conditions from the 
literature, including strengthenings of de Finetti’s (1937) Exchangeability, Hewitt and Savage’s 
(1955) Symmetry, of Seo’s (2009) Dominance and of Klibanoff et al.’s (2005) Consistency. One 
of those conditions (condition (viii) below) requires some additional definitions.

Definition 3. For f ∈ F , f � is the (not necessarily simple) act uniquely defined as follows:

f � (ω) =
{ ∫

S∞ f d�∞ if � = �(ω) ∈ �(S) ,

δx∗ ω ∈ {ω : �(ω) is not defined} .

Note this definition associates with each act f an act f � that, for each event {ω : �(ω) = �}
corresponding to the limiting frequencies generated by �, yields the lottery generated by f under 
the assumption that the i.i.d. process �∞ governs the realization of the state.

Since f � need not be simple, but is an element of the space F̂ (defined in Section 4.2) of all 
bounded and measurable functions from � to X, it is necessary to consider extending � to F̂ . 
In particular, we consider extensions continuous in the following sense: �̂ on F̂ satisfies Norm 
Continuity if f �̂g whenever fk�̂gk for all k = 1, 2, ... and fk and gk norm-converge to f and g
respectively.

Theorem 5. (Klibanoff et al., 2018, Theorem 3.1) The following conditions are equivalent under 
the assumption that � is reflexive, transitive and satisfies Mixture Continuity of �:

(i) for every f ∈F and π ∈ 
, f ∼ 1
2f + 1

2πf ,
(ii) for every f ∈F , π ∈ 
 and α ∈ [0,1], f ∼ απf + (1 − α)f ,

(iii) for every f ∈F and πi ∈ 
, f ∼ 1
n

∑n
i=1 πif ,

(iv) for every f ∈F , πi ∈ 
 and αi ∈ [0,1] with 
∑n

i=1 αi = 1, f ∼ ∑n
i=1 αiπif , and

(v) for every f ∈F and π ∈ 
, f ∼∗ πf .

Moreover, the above are equivalent to each of the following under Axioms 1–7:

(vi) Event Symmetry,
(vii) for every f, g ∈F , if 

∫
f dp �

∫
gdp for all symmetric p ∈ � (S∞), then f � g.

Finally, if, in addition, there exists an extension of � to F̂ that is reflexive, transitive and 
satisfies Norm Continuity, then the following is equivalent to all of the above:
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(viii) for f, g ∈ F , f � g if and only if f ��̂g�, if �̂ is any such extension.

A.2. Proof of Theorem 2

We begin by showing that the axioms imply the desired representation. Observing that 
Mixture Continuity of � implies Ghirardato et al.’s (2004) Archimedean axiom, we see 
that � are Invariant Biseparable preferences (i.e., satisfy axioms 1-5 in Ghirardato et al., 
2004). By Proposition 7 in Ghirardato et al. (2004), � has a representation, I (u (f )), 
where u is non-constant and affine, and I is monotonic, constant linear and lies between 
minp∈C

∫
u (f ) dp and maxp∈C

∫
u (f ) dp (i.e., for all simple acts f , minp∈C

∫
u (f ) dp ≤

I (u (f )) ≤ maxp∈C

∫
u (f ) dp) where C is the Bewley set from Theorem 4.5 in Klibanoff 

et al. (2014). By that Theorem 4.5, minp∈{
�∞:�∈R(�)

} ∫
u (f ) dp ≤ minp∈C

∫
u (f ) dp and 

maxp∈{
�∞:�∈R(�)

} ∫
u (f ) dp ≥ maxp∈C

∫
u (f ) dp. Therefore

min
p∈{

�∞:�∈R(�)
}
∫

u (f )dp ≤ I (u (f )) ≤ max
p∈{

�∞:�∈R(�)
}
∫

u (f )dp. (9)

Now consider the Relevant Range axiom. Observe that C∗(f ) can be written as

{x ∈ X : min
p∈{

�∞:�∈R(�)
}
∫

u (f )dp ≤ u(x) ≤ max
p∈{

�∞:�∈R(�)
}
∫

u (f )dp}.

Thus, C∗(f ) = C∗(g) if

max
p∈{

�∞:�∈R(�)
}
∫

u (f )dp = max
p∈{

�∞:�∈R(�)
}
∫

u (g)dp,

and

min
p∈{

�∞:�∈R(�)
}
∫

u (f )dp = min
p∈{

�∞:�∈R(�)
}
∫

u (g)dp.

Relevant Range therefore implies that I (u (f )) must be able to be expressed as a function 
of maxp∈{

�∞:�∈R(�)
} ∫

u (f ) dp and minp∈{
�∞:�∈R(�)

} ∫
u (f ) dp only. Since (9) holds and 

I (u (f )) depends only on maxp∈{
�∞:�∈R(�)

} ∫
u (f ) dp and minp∈{

�∞:�∈R(�)
} ∫

u (f ) dp, we 
may apply Lemma B.5 in Ghirardato et al. (2004) to conclude that

I (u (f )) = α min
p∈{

�∞:�∈R(�)
}
∫

u (f )dp + (1 − α) max
p∈{

�∞:�∈R(�)
}
∫

u (f )dp,

for some α ∈ [0, 1].
We next show that R(�) is finite. Consider α ∈ [0,1) first. Suppose R(�) is not finite. Then, 

we can take distinct �n ∈ R(�) for each n. Let An = ⋃
k>n �−1 (�k). Then, An ↘ ∅. Without 

loss of generality, assume [0,1] ⊆ u (X). Let u (x) = 1 > u 
(
x′) = 1

k
> u 

(
x′′) = 0 for each in-

teger k > 1. By Monotone Continuity of �∗, for each integer k > 1, there is n (k) > 0 such 
that V

(
xAn(k)x

′′) < 1
k

. Since V
(
xAn(k)x

′′) is decreasing in n(k), V
(
xAn(k)x

′′) → 0. However, 
applying the α-MEU form of V shows

V
(
xAn(k)x

′′) ≥ (1 − α) max
p∈{

�∞:�∈R(�)
}p

(
An(k)

) = 1 − α > 0,
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a contradiction. Note that the equality in the previous sentence follows since, no matter the 
value of n(k), if R(�) is infinite there is an m > n(k) with �m ∈ R(�), which, by defini-
tion of An, ensures �−1 (�m) ⊆ An(k) and therefore maxp∈{

�∞:�∈R(�)
} p

(
An(k)

) ≥ �∞
m (An(k)) ≥

�∞
m (�−1 (�m)) = 1.

Now let α = 1. Take �n ∈ R(�) and An ⊂ S∞ as above, and also let u (x) = 1 > u 
(
x′) =

1
k

> u 
(
x′′) = 0. By Monotone Continuity of �∗, for each k > 1, there is n (k) > 0 such that 

x′ �∗ xAn(k)x
′′. Again invoking Theorem 4.5 from Klibanoff et al. (2014), 1

k
≥ p

(
An(k)

)
for all 

p ∈ C. Equivalently, 1 − 1
k

≤ p
(
S∞\An(k)

)
for all p ∈ C. This implies V

(
xS∞\An(k)x

′′) ∈[
1 − 1

k
,1

]
. Since V

(
xS∞\An(k)x

′′) is increasing in n(k), V
(
xS∞\An(k)x

′′) → 1. However, 
(�n+1)

∞ (S∞\An) = 0 for all n, and hence V
(
xS∞\An(k)x

′′) → 0, a contradiction.
This proves that � has the desired representation.
Next, we show the axioms are necessary for the representation in (6), and thus also 

(5). That R(�̂) = D follows from Theorem 4.1 in Klibanoff et al. (2014). That Relevant 
Range is satisfied then follows since C∗(f ) = {x ∈ X : max

p∈
{
�∞:�∈R(�̂)

} ∫
u (f ) dp ≥ u(x) ≥

min
p∈

{
�∞:�∈R(�̂)

} ∫
u (f ) dp}. The remaining axioms except Monotone Continuity of �∗ are 

straightforward to verify.
We establish necessity of Monotone Continuity of �∗. Consider V1 (f ) ≡ minp∈{�∞:�∈D}∫

u (f ) dp first. The Bewley set of V1 is co ({�∞ : � ∈ D}) and it is weak* compact since D
is finite. Thus, V1 satisfies Monotone Continuity of �∗. Similarly, V0 (f ) = maxp∈{�∞:�∈D}∫

u (f ) dp also satisfies Monotone Continuity of �∗. Take An ↘ ∅ and x, x′, x′′ ∈ X such that 
u 

(
x′) > u 

(
x′′). Then, there are n̄1 and n̄0 such that

V1
(
λx′ + (1 − λ)h

) ≥ V1
(
λxAnx

′′ + (1 − λ)h
)
,

for all λ ∈ [0,1], h ∈ F and n ≥ n̄1, and

V0
(
λx′ + (1 − λ)h

) ≥ V0
(
λxAnx

′′ + (1 − λ)h
)
,

for all λ ∈ [0,1], h ∈ F and n ≥ n̄2. Since V = αV1 + (1 − α)V0,

V
(
λx′ + (1 − λ)h

) ≥ V
(
λxAnx

′′ + (1 − λ)h
)

for n = max (n̄1, n̄2) .

Thus, Monotone Continuity of �∗ is satisfied.
We now show uniqueness. Uniqueness of D follows from uniqueness of R

(
�

)
. Uniqueness of 

α when D is non-singleton is a conclusion of Lemma B.5 in Ghirardato et al. (2004). Uniqueness 
of u up to positive affine transformations is standard.

A.3. Proof of Proposition 1

The proof makes use of the following result establishing the overlap between SEU and prefer-
ences having a general α-MEU representation (1) with a finite set of measures C for a measurable 
space � without assuming � = S∞ or symmetry.

Lemma 1. Consider a preference relation represented by (1) and assume C = {p1, ..., pK } with 
K ≥ 2. The preference satisfies Independence if and only if α = 1

2 and there is p̂ ∈ �� such that 
p ∈ C implies 2p̂ − p ∈ co (C).
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We first prove the Proposition and then give the (somewhat lengthy) proof of the Lemma in 
its own subsection.

The “if” direction of the Proposition is implied by Lemma 1 with p̂ = 1
2�∞

1 + 1
2�∞

2 for D =
{�1, �2}. For the “only if” direction, suppose the preference satisfies Independence. Then, there 
is p̂ ∈ �(�) such that V (f ) = ∫

u (f ) dp̂ for all f ∈ F . By Event Symmetry, p̂ is a symmetric 
measure. By the de Finetti Theorem, p̂ is a mixture of i.i.d. measures. Moreover, for any � ∈ D, 
since D contains at least two elements, we have V

(
1�−1(�)

) = 1 − α = p̂
(
�−1 (�)

)
. Because 

α = 1
2 by Lemma 1,

1 = p̂ (�) ≥
∑
�∈D

p̂
(
�−1 (�)

)
=

∑
�∈D

1

2
≥ 1.

The latter inequality holds because D has at least two elements. To maintain equality, conclude 
there must be exactly two elements in D.

A.3.1. Proof of Lemma 1
Consider the “if” direction first. Assume the properties and take any f ∈ F . Without loss 

of generality, assume 
∫

u (f ) dp1 = minp∈C

∫
u (f ) dp and 

∫
u (f ) dp2 = maxp∈C

∫
u (f ) dp. 

Then, 2p̂ − p1 and 2p̂ − p2 belong to co (C). Hence,

V (f ) = 1

2
min
p∈C

∫
u (f )dp + 1

2
max
p∈C

∫
u (f )dp

= 1

2

∫
u (f )dp1 + 1

2
max
p∈C

∫
u (f )dp

≥ 1

2

∫
u (f )dp1 + 1

2

∫
u (f )d (2p̂ − p1) =

∫
u (f )dp̂

and

V (f ) = 1

2
min
p∈C

∫
u (f )dp + 1

2
max
p∈C

∫
u (f )dp

= 1

2
min
p∈C

∫
u (f )dp + 1

2

∫
u (f )dp2

≤ 1

2

∫
u (f )d (2p̂ − p2) + 1

2

∫
u (f )dp2 =

∫
u (f )dp̂

This implies V (f ) = ∫
u (f ) dp̂. This holds for any f and thus the preference satisfies Indepen-

dence.
Now consider the “only if” direction. Suppose the preference satisfies Independence. Then

V (λf + (1 − λ)g) = λV (f ) + (1 − λ)V (g)

for each f, g ∈ F and λ ∈ [0,1].
We show that there are f, g ∈ F and x ∈ X such that minp∈C

∫
u (f ) dp �= maxp∈C

∫
u (f ) dp

and 1
2f (ω) + 1

2g (ω) ∼ x for all ω. Because u is non-constant, we can let u (X) ⊃ [−1,1] and 
we do so. Then, there is an η ∈ B0 (�,R) such that minp∈C

∫
ηdp �= maxp∈C

∫
ηdp because C

has multiple elements. By normalization, we can assume

−1 ≤ inf
ω∈�

η (ω) < 0 < sup η (ω) ≤ 1.

ω∈�
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Then, there are f, g ∈ F such that η = u ◦ f and −η = u ◦ g. Letting x ∈ X such that u (x) = 0, 
we see that 1

2f (ω) + 1
2g (ω) ∼ x for all ω.

Then, for the above f, g ∈F and x ∈ X,

0 = u (x) =V

(
1

2
f + 1

2
g

)
= 1

2
V (f ) + 1

2
V (g)

=1

2

(
α min

p∈C

∫
ηdp + (1 − α)max

p∈C

∫
ηdp

)
+ 1

2

(
α min

p∈C

∫
−ηdp + (1 − α)max

p∈C

∫
−ηdp

)
=1

2
(2α − 1)

(
min
p∈C

∫
u (f )dp − max

p∈C

∫
u (f )dp

)
,

where the third equality follows from Independence of the preference. This implies

(2α − 1)

(
min
p∈C

∫
u (f )dp − max

p∈C

∫
u (f )dp

)
= 0.

Because minp∈C

∫
u (f ) dp �= maxp∈C

∫
u (f ) dp, α = 1

2 .
Turn to the property that there is p̂ ∈ �� such that p ∈ C implies 2p̂ − p ∈ co (C). Note that 

Independence implies V is SEU and we can find p̂ ∈ �� such that V (f ) = ∫
u (f ) dp̂ for all 

f ∈F . Without loss of generality, because p1 ∈ C, suppose 2p̂−p1 /∈ C by contradiction. A sep-
arating hyperplane theorem (for example, see the references in Ghirardato and Siniscalchi, 2012, 
Footnote 14) implies that there is f ∈ F such that 

∫
u (f ) d (2p̂ − p1) > maxp∈C

∫
u (f ) dp. 

But then,

V (f ) = 1

2
min
p∈C

∫
u (f )dp + 1

2
max
p∈C

∫
u (f )dp

≤ 1

2

∫
u (f )dp1 + 1

2
max
p∈C

∫
u (f )dp

<
1

2

∫
u (f )dp1 + 1

2

∫
u (f )d (2p̂ − p1) =

∫
u (f )dp̂.

This contradicts the property V (f ) = ∫
u (f ) dp̂ for all f ∈ F . Conclude that p ∈ C implies 

2p̂ − p ∈ co (C).

A.4. Proof that i.i.d. α-MEU preferences satisfy Kopylov’s (2003) axioms

Kopylov (2003, Theorem 2.4) shows that a set of axioms is equivalent to preferences being 
represented by a functional of the form

UK (f ) = α0 min
m∈M0

∫
u (f )dm + (1 − α0) max

m∈M0

∫
u (f )dm. (10)

Here, α0 ∈ [0,1] is a constant, and M0 ⊂ �(�) is the set of probability measures m such that

U0 (r) =
∫

u (r) dm

represents the preference restricted to G0, the set of subjectively risky acts. An act r is a subjec-
tively risky act, i.e., r ∈ G0 if and only if for all acts f, g and all λ ∈ (0,1),
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f � g ⇔ λf + (1 − λ) r � λg + (1 − λ) r.

Theorem 6. All i.i.d. α-MEU preferences as in (5) or (6) have a representation as in (10), and 
satisfy Kopylov’s axioms.

Proof of Theorem 6. Most of the argument proceeds assuming � is any measurable space and 
that the set of measures in the α-MEU representation is finite. The further restrictions to � = S∞
and the measures being i.i.d. are imposed only in the last step.

Suppose that preferences are represented by

V (f ) ≡ α min
p∈P

∫
u (f )dp + (1 − α)max

p∈P

∫
u (f )dp (11)

where P = {p1, ..., pK } and α �= 1
2 . The next two lemmata find the sets G0 and M0 for such 

preferences. The case of α = 1
2 will be dealt with separately.

Lemma 2. For such preferences, G0 = {
r ∈F : minp∈P

∫
u (r) dp = maxp∈P

∫
u (r) dp

}
Proof of Lemma 2. First we show ⊃. Suppose minp∈P

∫
u (r) dp = maxp∈P

∫
u (r) dp. Then, 

for any f ∈ F and λ ∈ [0,1],

min
p∈P

∫
u (λf + (1 − λ) r) dp = λmin

p∈P

∫
u (f )dp + (1 − λ)min

p∈P

∫
u (r) dp

and similarly for the maximum operator. Thus, V (λf + (1 − λ) r) = λV (f )+ (1 − λ)V (r) and 
hence r ∈ G0.

Turn to ⊂. Suppose r ∈ G0. Take x ∈ X such that

u (x) = 1

2

(
max
ω∈�

u(r (ω)) + min
ω∈�

u(r (ω))

)
,

where the max and min exist because all acts are simple acts. Since u (X) is convex, such an x
exists. Take an f ∈ F such that u (f (ω)) = 2u (x) − u (r (ω)). To see such an f exists, note that 
u (X) is convex and

min
ω∈�

u(r (ω)) ≤ 2u (x) − u (r (ω)) ≤ max
ω∈�

u(r (ω))

implies u (f (ω)) = 2u (x) − u (r (ω)) ∈ u (X). We see that 1
2f (ω) + 1

2 r (ω) ∼ x for all ω ∈ �. 
Take x′ ∈ X such that f ∼ x′. Then,

u (x) =V

(
1

2
f + 1

2
r

)
= V

(
1

2
x′ + 1

2
r

)
= 1

2
V

(
x′) + 1

2
V (r) = 1

2
V (f ) + 1

2
V (r)

=1

2

(
α min

p∈P

∫
u (f )dp + (1 − α)max

p∈P

∫
u (f )dp

)
+ 1

2

(
α min

p∈P

∫
u (r) dp + (1 − α)max

p∈P

∫
u (r) dp

)
=1

2

(
α min

p∈P

(
2u (x) −

∫
u (r) dp

)
+ (1 − α)max

p∈P

(
2u (x) −

∫
u (r) dp

))
+ 1

(
α min

∫
u (r) dp + (1 − α)max

∫
u (r) dp

)

2 p∈P p∈P

23



P. Klibanoff, S. Mukerji, K. Seo and L. Stanca Journal of Economic Theory 199 (2022) 105202
=1

2

(
2u (x) + (2α − 1)

(
min
p∈P

∫
u (r) dp − max

p∈P

∫
u (r) dp

))
.

Here, the second equality follows because r ∈ G0 and f ∼ x′. The third holds because x′ is a 
lottery. Then, the above computation results in

0 = (2α − 1)

(
min
p∈P

∫
u (r) dp − max

p∈P

∫
u (r) dp

)
.

Because α �= 1
2 , conclude minp∈P

∫
u (r) dp = maxp∈P

∫
u (r) dp. �

Lemma 3. For such preferences,

M0 =
{

p ∈ �(�) : p =
K∑

k=1

θkpk for
K∑

k=1

θk = 1 and θ1, ..., θK ∈R

}

Notice that the weights θ1, ..., θK need not all be nonnegative.

Proof of Lemma 3. First, suppose p = ∑K
k=1 θkpk ∈ �� for some θ1, ..., θK ∈ R with 

∑K
k=1 θk =

1. Then, for any r ∈ G0,∫
u (r) dp =

K∑
k=1

θk

∫
u (r) dpk =

∫
u (r) dp1 = V (r)

by Lemma 2. Thus, SEU with p as the measure evaluates all r ∈ G0 correctly, and therefore 
p ∈M0.

Turn to the opposite direction. Suppose p ∈ �(�) such that, for all θ1, ..., θK ∈ R satisfying ∑K
k=1 θk = 1, p �= ∑K

k=1 θkpk . Let

C =
{

p′ ∈ ba (�) : p′ =
K∑

k=1

θkpk for some θ1, ..., θK ∈ R with
K∑

k=1

θk = 1

}
.

Then C is closed and convex, and by the separating hyperplane theorem there is b ∈
B (�(�) ,R) such that∫

bdp >

∫
bd

(
K∑

k=1

θkpk

)
(12)

for all θ1, ..., θK ∈ R satisfying 
∑K

k=1 θk = 1. In fact, we can take b ∈ B0 (�(�) ,R) by Ghi-
rardato and Siniscalchi (2012, Footnote 14), and also b ∈ B0 (�(�) ,u (X)) by normaliza-
tion. Then, there is r ∈ F such that b = u ◦ r . We now show that maxk=1,...,K

∫
u (r) dpk =

mink=1,...,K

∫
u (r) dpk . Suppose this does not hold. Without loss of generality, let 

∫
u (r) dp1 >∫

u (r) dp2. Then, we can take a very large θ1 and a very small θ2, keeping θ1 + θ2, θ3,..., θK con-
stant. This makes the right-hand side of (12) become as large as we like, which is a contradiction. 
Thus, r ∈ G0 by Lemma 2. But then p /∈ M0, since 

∫
u (r) dp �= ∫

u (r) dpk for all k = 1, ..., K , 
whereas the equality of these expectations is required for all acts in G0. �
Lemma 4. For such preferences, if � = S∞ and each pk ∈ P is i.i.d., then M0 = co {P }.
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Proof of Lemma 4. By Lemma 3,

M0 =
{

p ∈ �(�) : p =
K∑

k=1

θkpk for
K∑

k=1

θk = 1 and θ1, ..., θK ∈ R

}
.

If K = 1 the result is trivial. Assume K ≥ 2. If θi < 0 for some i ∈ {1, . . . , K}, then 
∑K

k=1 θkpk

is not a probability measure because, letting �i ∈ �(S) be such that pi = �∞
i ,

p
(
�−1 (�i)

)
=

K∑
k=1

θkpk

(
�−1 (�i)

)
= θi < 0.

Therefore

M0 =
{

p ∈ �(�) : p =
K∑

k=1

θkpk for
K∑

k=1

θk = 1 and θ1, ..., θK ∈ R+

}
= co {P } ,

which completes the proof. �
Thus far, we have shown that any i.i.d. α-MEU representation as in (5) or (6) with α �= 1

2
has M0 = co {{�∞ : � ∈ D}} = co

{{�∞ : � ∈ R(�)}} and therefore is also a representation of the 
form (10). By Kopylov 2003, Theorem 2.4, this implies that it satisfies his axioms.

Before turning to the case of α = 1
2 , we note that the i.i.d. restriction in Lemma 4 was im-

portant to the argument. More general preferences represented as in (11) with α �= 1
2 may not 

have representations of the form (10). For a simple example, suppose that � = S = {H,T } and 
P = {p1, p2} with p1 (H) = 1

3 and p2 (H) = 2
3 . Then M0 = �(S) ⊃ co{P } implying that no 

representation as in (10) exists, and that these preferences violate Kopylov’s axiom of Partial 
Ignorance outside G0.

Finally, turn to i.i.d. α-MEU preferences (so that � = S∞ and each pk ∈ P is i.i.d.) with 
α = 1

2 . If K ≤ 2, then, by Proposition 1, preferences are SEU and thus all acts are subjec-
tively risky and Kopylov’s axioms are satisfied. Suppose therefore that K ≥ 3. Inspection of 
the proofs of Lemma 2, Lemma 3 and Lemma 4 reveals that the parts of those arguments that 
did not depend on α �= 1

2 can be used to show that M0 ⊆ co {P }. We complete the argument that 
M0 = co {P } by showing that M0 ⊇ co {P }. Suppose r ∈ G0. We show that minp∈P

∫
u (r) dp =

maxp∈P

∫
u (r) dp. Suppose not. Let pk = �∞

k with some �k ∈ �(S) for k = 1, ..., K . With-
out loss of generality, assume maxp∈P

∫
u (r) dp = ∫

u (r) dp1 = ∫
u (r) d�∞

1 >
∫

u (r) d�∞
2 =∫

u (r) dp2 = minp∈P

∫
u (r) dp. Since r ∈ G0, for any f, g such that f � g and all λ ∈ [0, 1] it 

must be that V (λf + (1 − λ)r) ≥ V (λg + (1 − λ)r). Let

f = r(arg max
ω∈�

u(r (ω)))�−1(�1 ∪ �3)r(arg min
ω∈�

u(r (ω))) and

g = r(arg max
ω∈�

u(r (ω)))�−1(�2 ∪ �3)r(arg min
ω∈�

u(r (ω))).

Observe that f ∼ g. Furthermore, for all λ,

V (λf + (1 − λ)r)

=1

2
(λ min

ω∈�
u(r (ω)) + (1 − λ)

∫
u (r) d�∞

2 ) + 1

2
(λmax

ω∈�
u(r (ω)) + (1 − λ)

∫
u (r) d�∞

1 )

while, for λ sufficiently large,
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V (λg + (1 − λ)r)

=1

2
(λ min

ω∈�
u(r (ω)) + (1 − λ)

∫
u (r) d�∞

1 ) + 1

2
(λmax

ω∈�
u(r (ω)) + (1 − λ)

∫
u (r) d�∞

3 ).

Therefore, V (λf + (1 − λ)r) = V (λg + (1 − λ)r) if and only if 
∫

u (r) d�∞
3 = ∫

u (r) d�∞
2 . 

Next, consider

f ′ = r(arg min
ω∈�

u(r (ω)))�−1(�1 ∪ �3)r(arg max
ω∈�

u(r (ω))) and

g′ = r(arg min
ω∈�

u(r (ω)))�−1(�2 ∪ �3)r(arg max
ω∈�

u(r (ω))).

Again, f ′ ∼ g′. Furthermore, for λ sufficiently large,

V
(
λf ′ + (1 − λ)r

)
=1

2
(λ min

ω∈�
u(r (ω)) + (1 − λ)

∫
u (r) d�∞

3 ) + 1

2
(λmax

ω∈�
u(r (ω)) + (1 − λ)

∫
u (r) d�∞

2 )

and, for all λ,

V
(
λg′ + (1 − λ)r

)
=1

2
(λ min

ω∈�
u(r (ω)) + (1 − λ)

∫
u (r) d�∞

2 ) + 1

2
(λmax

ω∈�
u(r (ω)) + (1 − λ)

∫
u (r) d�∞

1 ).

Therefore, V
(
λf ′ + (1 − λ)r

) = V
(
λg′ + (1 − λ)r

)
if and only if 

∫
u (r) d�∞

3 = ∫
u (r) d�∞

1 . 
Since 

∫
u (r) d�∞

1 >
∫

u (r) d�∞
2 , it must be that, for λ sufficiently large, either λf + (1 − λ)r �

λg+(1 −λ)r or λf ′ +(1 −λ)r � λg′ +(1 −λ)r must hold, contradicting r ∈ G0. Therefore, G0 ={
r ∈F : minp∈P

∫
u (r) dp = maxp∈P

∫
u (r) dp

}
and therefore co {P } ⊆ M0. This completes 

the α = 1
2 case and the argument. �

A.5. Proof of Theorem 3

We start with necessity of Monotone Continuity of �∗ and Savage’s axioms on F�. Ghi-
rardato and Siniscalchi (2010) show necessity of Cauchy continuity. Necessity of the remaining 
axioms is straightforward.

Monotone Continuity of �∗: Suppose that there are m, M > 0 such that m |a − b| ≤
|φ (a) − φ (b)| ≤ M |a − b| for all a, b ∈ u (X). Fix any x, x′, x′′ ∈ X with x′ � x′′. The only 
non-trivial case is x � x′. Without loss of generality, assume u (x) = 1 > u 

(
x′) = t ′ > u 

(
x′′) = 0

and [0,1] ⊆ u (X). Suppose An ↘ ∅. Take ε′, ε > 0 so that

ε′ < t ′ and m
(
t ′ − ε′) (1 − ε) ≥ M

(
1 − t ′

)
ε.

Define ζn : � (S) → R by ζn (�) = �∞ (An), and temporarily equip � (S) with the wc topology. 
Since wc open sets are weak* open, μ is well-defined on the Borel σ -algebra generated by wc 
open sets. Then, by Lusin’s theorem (Aliprantis and Border, 2006, Theorem 12.8), there is a 
wc compact set L ⊆ � (S) such that μ (L) > 1 − ε and all ζn are wc continuous. Note that 
ζn converges monotonically to 0 pointwise. Then by Dini’s Theorem (Aliprantis and Border, 
2006, Theorem 2.66), ζn on L converges uniformly to 0. Hence there is N > 0 such that ζN =
�∞ (AN) < ε′ for all � ∈ L. To see x′ �∗ xANx′′, and thus Monotone Continuity of �∗, compute, 
for any α ∈ [0,1] and h ∈F ,
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U
(
αx′ + (1 − α)h

) − U
(
αxANx′′ + (1 − α)h

)
=

∫
L

φ

(
αt ′ + (1 − α)

∫
hd�∞

)
− φ

(
α�∞ (AN) + (1 − α)

∫
hd�∞

)
dμ(�)

+
∫

�(S)\L
φ

(
αt ′ + (1 − α)

∫
hd�∞

)
− φ

(
α�∞ (AN) + (1 − α)

∫
hd�∞

)
dμ(�)

>

∫
L

φ

(
αt ′ + (1 − α)

∫
hd�∞

)
− φ

(
αε′ + (1 − α)

∫
hd�∞

)
dμ(�)

+
∫

�(S)\L
φ

(
αt ′ + (1 − α)

∫
hd�∞

)
− φ

(
α + (1 − α)

∫
hd�∞

)
dμ(�)

≥
∫
L

αm
(
t ′ − ε′)dμ(�) +

∫
�(S)\L

αM
(
t ′ − 1

)
dμ(�)

= α
[
m

(
t ′ − ε′)μ(L) − M

(
1 − t ′

)
(1 − μ(L))

]
≥ α

[
m

(
t ′ − ε′) (1 − ε) − M

(
1 − t ′

)
ε
] ≥ 0.

P1-P6 on F�: For f ∈ F�, f is constant on �−1 (�), so

U(f ) =
∫

�(S)

φ

⎛⎝∫
S∞

u (f )d�∞
⎞⎠dμ(�)

=
∫

�(S)

φ
(
u

(
f ◦ �−1 (�)

))
dμ(�) ,

represents � on F�. Viewing f ◦ �−1 (�) as an act from � (S) to X, this is an expected utility 
representation with countably additive, non-atomic μ and non-constant vNM utility function v ≡
φ ◦u. Therefore, P1-P6 are satisfied. That the continuity axiom is satisfied follows by Lebesgue’s 
dominated convergence theorem (Aliprantis and Border, 2006, Theorem 11.21).

As for sufficiency, we first prove the following claims.

Claim I. There exists u : X → R non-constant and affine that represents � on X. Moreover, 
without loss of generality [0, 1] ⊆ u(X).

This claim follows by standard results, see for example Cerreia-Vioglio et al. (2011).
Now for f ∈ F�, let u(f ◦�−1) : �(S) → R denote the mapping defined by u(f ◦�−1)(�) =

u(f (�−1(�))) for every � ∈ �(S). Note that u(f ◦ �−1) is well-defined and belongs to 
B0(�(S), u(X)) since f is constant on �−1(�).

Claim II. B0(�(S), u(X)) = {u(f ◦ �−1) : f ∈F�}.

Showing that {u(f ◦ �−1) : f ∈F�} ⊆ B0(�(S), u(X)) is straightforward. As for B0(�(S),

u(X)) ⊆ {u(f ◦�−1) : f ∈ F�}, take a ∈ B0(�(S), u(X)). Then a = ∑n
i=1 yi1Ai

where (Ai)
n
i=1

is a measurable partition of �(S). For each i, let Ei = �−1(Ai). Note that if Ai is non-empty, 
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then Ei is also non-empty. Now take any x1, . . . , xn ∈ X such that u(xi) = yi for every i =
1, . . . , n. Let f ∈F� be such that for every i = 1, . . . n it holds that f (ω) = xi whenever ω ∈ Ei . 
Then u(f ◦ �−1) = a. It follows that B0(�(S), u(X)) ⊆ {u(f ◦ �−1) : f ∈F�} as desired.

Now define �̃ on B0(�(S), u(X)) by

a�̃b ⇐⇒ ∃f,g ∈F� such that u(f ◦ �−1) = a,u(g ◦ �−1) = b and f � g,

for every a, b ∈ B0(�(S), u(X)). Note that �̃ is well defined since by Claim II for every a, b ∈
B0(�(S), u(X)) there exists f, g ∈ F� such that a = u(f ◦�−1) and b = u(f ◦�−1). Moreover, 
if f, h ∈ F� are such that u(f ◦ �−1) = u(h ◦ �−1) then f ∼ h. To see this, observe that this 
last equality implies that u(f (ω)) = u(h(ω)) for every ω ∈ {ω : �(ω) is defined}. Because Event 
Symmetry implies that the event {ω : �(ω) is not defined} is null, it follows that f ∼ h. Hence 
�̃ is well defined. It is now straightforward to see that �̃ satisfies the following claim:

Claim III. �̃ satisfies:

P1 �̃ is complete and transitive.
P2 For every a, b, c, c′ ∈ B0(�(S), u(X)) and E ∈ ��,

aEc�̃bEc =⇒ aEc′�̃aEc′.
P3 For every non-null A ∈ ��, x, y ∈ u(X) and a, b ∈ B0(�(S), u(X)),

x > y ⇐⇒ xAa�̃yAb.

P4 For every A, B ∈ �� and x, y, x′, y′ ∈ u(X) such that x�̃y, x′�̃y′,

xAy�̃xBy =⇒ x′Ay′�̃x′By′.
P6 For every a, b ∈ B0(�(S), u(X)) and x ∈ u(X) such that b�̃a, there exists a ��-measurable 

finite partition (Ai)
n
i=1 of �(S) such that for every i = 1, . . . , n, b�̃xAi

a and xAi
b�̃a.

Recall that we write an → a if for every b ∈ B0(�(S), u(X)), b�̃a implies that there exists N
such that n ≥ N =⇒ b�̃an and a�̃b implies that there exists N ′ such that n ≥ N ′ =⇒ an�̃b.

Continuity. If (an) is a sequence in B0(�(S), u(X)), converges to a ∈ B pointwise and satisfies 
m ≤ an ≤ M for m, M ∈R, then an → a.

Note that the σ -algebra generated by the open sets of �(S) is countably separated Mackey 
(1957) since S is a compact metric space. By Claim III and Stanca (2020, Theorem 5) (reported 
as Theorem 7 below), there exists μ ∈ �(�(S)) non-atomic and φ : u(X) → R continuous and 
strictly increasing such that

a�̃b ⇐⇒
∫

φ(a(�))μ(�) ≥
∫

φ(b(�))μ(�).

Moreover, if (μ′, φ′) is another representation then μ = μ′ and φ′ = aφ + b for constants a, b
with a > 0. We can conclude that for every f, g ∈F�,

f � g ⇐⇒ u(f ◦ �−1)�̃u(g ◦ �−1)

⇐⇒
∫

φ(u(f (�−1(�))))dμ(�) ≥
∫

φ(u(g(�−1(�))))dμ(�)

⇐⇒
∫

φ

(∫
u(f (ω))d�∞(ω)

)
dμ(�) ≥

∫
φ

(∫
u(g(ω))d�∞(ω)

)
dμ(�).
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Theorem 7. (Stanca, 2020, Theorem 5) Consider a measurable space (�, A) where A is count-
ably separated. Let �̃ be a relation on B0(�, K) where K is an interval that contains 0 and a 
positive number. Then �̃ satisfies P1-P6 and continuity if and only if there exists a non-atomic 
measure μ on � (�) and u : K →R strictly increasing and continuous such that

U(f ) =
∫

u(f (ξ))μ(dξ),

represents �̃. Moreover, any other such representation with μ′ and u′ satisfies μ = μ′ and u =
au + b for a > 0 and constant b.

It remains to extend the representation to the entire set F . By Proposition 1 in Ghirardato 
and Siniscalchi (2010), Cauchy continuity ensures the existence of a complete, monotonic and 
norm-continuous extension of � from F to F̂ .16 Denote this extension by �̂. When restricted to 
the set of bounded ��-measurable functions from � to X, it is represented by

V (f ) =
∫

�(S)

φ

⎛⎝ ∫
S∞

u (f )d�∞
⎞⎠dμ(�) .

Given the extension �̂, we can invoke the equivalence of (vi) and (viii) in Theorem 5. By this 
equivalence, for any act f ∈F , f ∼ x ∈ X if and only if f �

∼̂x� = x (f � is defined just before 
the statement of Theorem 5). Therefore, for any act f ∈ F , f ∼̂f �. Defining U (f ) by U (f ) =
V

(
f �

)
, we see that U represents � on F . Since, by construction of f �, 

∫
S∞ u 

(
f �

)
d�∞ =∫

S∞ u (f ) d�∞ for all � ∈ � (S),

U (f ) = V
(
f �

) =
∫

�(S)

φ

⎛⎝ ∫
S∞

u
(
f �

)
d�∞

⎞⎠dμ(�)

=
∫

�(S)

φ

⎛⎝ ∫
S∞

u (f )d�∞
⎞⎠dμ(�) for f ∈F .

Finally, we need to show there are m, M > 0 such that m |a − b| ≤ |φ (a) − φ (b)| ≤ M |a − b|
for all a, b ∈ u (X). To prove it by contradiction, assume that this does not hold. Because μ is 
non-atomic, suppμ is infinite and thus we can take distinct elements �n ∈ suppμ, for all integers 
n ≥ 1. Let An = ⋃

k≥n �−1 (�k). Then, An ↘ ∅ and for each n, (�n)
∞ (An) = 1 > ε ≡ 1

2 . Fix 
x � x′ � x′′ and without loss of generality, assume u (x) = 1 > u 

(
x′) = ε

2 > u 
(
x′′) = 0. Since 

An ↘ ∅, Monotone Continuity of �∗ implies that there is n such that∫
φ

(
α ε

2 + (1 − α)

∫
u (h)d�∞

)
dμ(�)

≥
∫

φ

(
α�∞ (An) + (1 − α)

∫
u (h)d�∞

)
dμ(�) , (13)

16 Recall that F̂ is the set of all bounded acts, i.e. measurable functions f : � → X such that for some x, y ∈ X it holds 
that x � f (ω) � y for every ω ∈ �.
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for all α ∈ [0,1] and h ∈ F . To pick a helpful h, note that � �→ �∞ (An) is relatively weak* 
continuous and hence there is a relatively weak* open L ⊆ � (S) containing �n such that 
�∞ (An) > ε for all � ∈ L. Since �n ∈ suppμ, μ (L) > 0. Take any a, b ∈ u (X) and define h
by

u (h (ω)) = a if ω ∈ �−1 (L) , and u (h (ω)) = b otherwise.

Then, the left-hand side of (13) reduces to

μ(L)φ
(
α ε

2 + (1 − α)a
) + (1 − μ(L))φ

(
α ε

2 + (1 − α)b
)
,

and the right-hand side of (13) becomes∫
L

φ
(
α�∞ (An) + (1 − α)a

)
dμ(�) +

∫
�(S)\L

φ
(
α�∞ (An) + (1 − α)b

)
dμ(�)

≥μ(L)φ (αε + (1 − α)a) + (1 − μ(L))φ ((1 − α)b) .

Therefore, (13) implies

(1 − μ(L))
[
φ

(
α ε

2 + (1 − α)b
) − φ ((1 − α)b)

]
≥μ(L)

[
φ (αε + (1 − α)a) − φ

(
α ε

2 + (1 − α)a
)]

.

Then,

μ(L) ≤ (1 − μ(L))
φ

(
α ε

2 + (1 − α)b
) − φ ((1 − α)b)

φ (αε + (1 − α)a) − φ
(
α ε

2 + (1 − α)a
) .

Since α, a and b were arbitrary, we have μ (L) ≤ (1 − μ(L))K where

K = inf

{
φ

(
a′ + δ

) − φ
(
a′)

φ (b′ + δ) − φ (b′)
: a′, b′, a′ + δ, b′ + δ ∈ u (X) ,0 < δ ≤ ε

2

}
.

Recall that μ (L) > 0 and hence K > 0. Thus, to show a contradiction, it suffices to show that 
K = 0. Let ρ

(
t, t ′

) = [
φ

(
t ′
) − φ (t)

]
/ 
(
t ′ − t

)
. Assume the lower inequality in (i) fails – that 

is, for any γ > 0, ρ
(
t, t ′

)
< γ for some t < t ′ ∈ u (X). (The case where the upper inequality 

in (i) fails can be proved similarly.) Thus, for any δ ∈ (0, t ′ − t], there is t ′′ ∈ u (X) such that 
ρ

(
t ′′, t ′′ + δ

)
< γ , because otherwise ρ

(
t, t ′

)
< γ can’t be true. Next take any r < r ′ ∈ u (X)

and let ρ̄ = ρ
(
r, r ′) > 0. By similar reasoning, for any δ ∈ (0, r ′ − r] > 0, there is r ′′ ∈ u (X)

such that ρ
(
r ′′, r ′′ + δ

) ≥ ρ̄. Thus,

inf

{
ρ

(
t ′′, t ′′ + δ

)
ρ (r ′′, r ′′ + δ)

: t ′′, r ′′, t ′′ + δ, r ′′ + δ ∈ u (X) ,0 < δ ≤ min[ ε
2 , r ′ − r, t ′ − t]

}
= 0.

This infimum is at least K , thus K = 0, a contradiction. Because there are m, M > 0 such that 
m |a − b| ≤ |φ (a) − φ (b)| ≤ M |a − b| for all a, b ∈ u (X), we can apply Klibanoff et al. (2014, 
Theorem 4.3) to conclude that R(�) = suppμ as desired.
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A.6. Proof of Theorem 4

We start by showing the necessity of Monotone Continuity of �∗ and Wakker’s axioms on 
F�. Ghirardato and Siniscalchi (2010) show necessity of Cauchy continuity. Necessity of the 
remaining axioms is straightforward.

Monotone Continuity of �∗: Case (i) can be treated in the same way as in the proof of Theo-
rem 3.

Turn to the case where (ii) holds, so that suppμ is finite. Again suppose An ↘ ∅ and x �
x′ � x′′. Since suppμ is finite, sup�∈suppμ �∞ (An) → 0. Thus, for ε > 0 satisfying u 

(
x′) >

εu (x) + (1 − ε)u 
(
x′′), there is n > 0 such that �∞ (An) < ε for all � ∈ suppμ. This implies

U
(
αx′ + (1 − α)h

) − U
(
αxAnx

′′ + (1 − α)h
)

=
∫

φ

(
αu

(
x′) + (1 − α)

∫
u (h)d�∞

)
− φ

(
α

(
�∞ (An)u (x) + (

1 − �∞ (An)
)
u

(
x′′)) + (1 − α)

∫
u (h)d�∞

)
dμ(�)

≥ 0,

for all α ∈ [0,1], h ∈ F , and � ∈ suppμ. Therefore, x′ �∗ xAnx
′′ and Monotone Continuity of 

�∗ holds.
The fact that Wakker’s axioms are satisfied on F� follows by the same reasoning as in the 

proof of Theorem 3. Note that Wakker’s pointwise monotonicity axiom (see Wakker, 1989, Def-
inition V.4.l) is implied by our Axiom 2.

Now turn to sufficiency. By the same reasoning as in the proof of Theorem 3, we can identify 
the set of acts F� with the set of “second-order” acts F�(S) = {f : �(S) → X : |f (S)| < ∞}. 
Indeed, for any f ∈ F� we can define the second order act � �→ f ◦ �−1 (�). Conversely, using 
the same reasoning as in the proof of Theorem 3, for any a ∈ F�(S) we can find f ∈ F� such 
that f ◦ �−1 (�) = a. It follows that we can define a preference relation on F�(S) which satisfies 
the axioms of Wakker (1989). By Wakker (1989, Theorem V.6.1), � on F� can be represented 
by

V (f ) =
∫

�(S)

v
(
f ◦ �−1 (�)

)
dμ(�) ,

for a wc continuous v on X and a countably additive measure μ ∈ � (�(S)). Since � on X is 
vN-M, there is a mixture linear function u on X, representing � on X. Thus, v = φ ◦ u for some 
strictly increasing function φ on u (X). By Mixture Continuity of �, α �→ u (αx + (1 − α)y)

is continuous on [0,1]. Since v is wc continuous, φ is continuous. Moreover, u = φ−1 ◦ v is 
wc-continuous. Non-triviality implies u is non-constant.

Note that, for f ∈F�,

u
(
f ◦ �−1 (�)

)
=

∫
�−1(�)

u (f ) d�∞ =
∫

S∞
u (f )d�∞.

Thus,

V (f ) =
∫

φ

⎛⎝ ∫
∞

u (f )d�∞
⎞⎠dμ(�) for f ∈F�.
�(S) S

31



P. Klibanoff, S. Mukerji, K. Seo and L. Stanca Journal of Economic Theory 199 (2022) 105202
It remains to extend to the entire F . This can be done in the same way as in the proof of 
Theorem 3.

To complete sufficiency, we assume suppμ is infinite and show (i) in the statement holds. The 
proof of Theorem 3 shows this is implied by Monotone Continuity of �∗.

Uniqueness of u up to positive affine transformations is standard. Uniqueness of μ and φ
follows by the construction – expected utility preference on acts in F� uniquely pin down μ
and, when suppμ is non-singleton, make φ unique up to positive affine transformations given a 
normalization of u. Finally, as either there are m, M > 0 such that m |a − b| ≤ |φ (a) − φ (b)| ≤
M |a − b| for all a, b ∈ u (X) or suppμ is finite, we can again apply Klibanoff et al. (2014, 
Theorem 4.3) to conclude that R(�) = suppμ.

A.7. A version of Theorem 3 with a partially atomic measure

Define the set of atoms in �(S) as

A =
{
� ∈ �(S) : �−1(�) is non-null

}
.

Consider the following weakening of P6:

Axiom 15 (Unlikely Atoms). There exist x, y ∈ X with x � y such that y�−1(A)x � x�−1(A)y.

In words, this axiom restricts the likelihood of the set of atoms of long-run frequencies.

Theorem 8. � satisfies Axioms 1–7, P2-P4, Unlikely Atoms, Pointwise Continuity and Cauchy 
Continuity if and only if there is a non-constant vNM utility function u : X → R, a strictly in-
creasing continuous function φ : u(X) → R such that there are m, M > 0 with m|x − y| ≤
|φ(x) − φ(y)| ≤ M|x − y| for every x, y ∈ u(X) and a Borel probability measure μ ∈ �(�(S))

such that μ(A) ≤ 1
2 and

U(f ) =
∫

�(S)

φ

(∫
u(f )d�∞

)
μ(�),

represents �. Moreover, μ is unique, R(�) = suppμ, u is unique up to a positive affine trans-
formation, and, given a normalization of u, φ is unique up to positive affine transformations.

A.7.1. Proof of Theorem 8
The proof proceeds as in Section A.5. The only difference is that we invoke Stanca (2020, 

Theorem 6) instead of Stanca (2020, Theorem 5) when deriving μ. It is immediate that Unlikely 
Atoms is equivalent to the condition μ(A) ≤ 1

2 .

A.8. Proof of Proposition 2

If either the support of μ is a singleton or φ is linear, (7) is (an increasing transformation 
of) a subjective expected utility functional and therefore satisfies Independence. For the other 
direction, argue by contradiction. Suppose that the preference satisfies Independence, φ is not 
linear and the support of μ contains at least two elements. Then there is a set E ⊂ �(S) such 
that μ(E) ∈ (0, 1). Independence plus Axioms 1–7 implies that preferences have an SEU repre-
sentation with the same vNM utility function u as in the smooth ambiguity representation (7). 
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Denote the unique probability measure in this SEU representation by η. By Event Symmetry and 
the de Finetti theorem, η is symmetric and therefore there is a unique Borel probability measure 
λ ∈ �(�(S)) such that,

η(A) =
∫

�(S)

�∞(A)dλ(�)

for all measurable A ⊆ S∞. Thus∫
�(S)

∫
S∞

u (f )d�∞(ω)dλ(�)

represents the same preference as (7). In particular, they represent the same subjective expected 
utility preference when restricted to acts in F�. Therefore∫

�(S)

u(f (�−1(�))dλ(�)

and ∫
�(S)

φ ◦ u(f (�−1(�))dμ(�)

represent the same SEU preferences over acts in F�. Since μ(E) ∈ (0, 1) implies that μ has 
non-singleton support, the uniqueness properties of an SEU representation yield that φ ◦ u must 
be a positive affine transformation of u. This contradicts the non-linearity of φ and completes the 
proof.
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