
A�ne Gateaux Di�erentials and

the von Mises Statistical Calculus

Simone Cerreia-Vioglio, Fabio Maccheroni, Massimo Marinacci

Luigi Montrucchio, Lorenzo Stanca

March 1, 2024

Abstract

This paper presents a general study of one-dimensional di�erentiability for functionals on

convex domains that are not necessarily open. The local approximation is carried out by a�ne

functionals, rather than linear ones as in standard Gateaux di�erentiability. This a�ne notion

of di�erentiability naturally arises in many applications and, here and there, it appeared in the

literature. Our systematic analysis aims to give a general perspective on it.
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1 Introduction

To study the asymptotic behavior of statistical functionals, Richard von Mises elaborated a notion of

directional derivability for functionals de�ned over spaces of probability distributions.1 Indeed, these

domains have no interior points and so standard Gateaux di�erentiability is no longer adequate.

In this paper we build upon von Mises's idea by studying functionals de�ned over abstract convex

sets. For a function f : C ! R de�ned on a convex set C, the starting point is the directional

derivative

Df (x; y) = lim
t#0

f ((1� t)x+ ty)� f (x)
t

at a point x of C along the direction y, where y is another point of C. We use the term weak a�ne

di�erential when the function Df(x; �) is a�ne on C (De�nition 6). For this basic notion it is already
possible to prove a number of results. Yet, we reserve the term a�ne di�erential to the important

special case when the a�ne functional Df (x; �) can be extended to the whole space, yielding a notion
of a�ne gradient. To exemplify, the von Mises di�erential is just our a�ne di�erential for functionals

whose domain is a space of distributions.

The early notion of di�erentiability introduced by von Mises has been used in statistics (see Hampel

[14], Huber [15, pp. 34-40], and Fernholz [23]). A similar approach, again on spaces of distributions,

was also used in risk theory (see Chew et al. [8]). More recently, a general formulation of Roy's

identity in consumer theory has been established through a�ne derivatives by [7]. Summing up, a�ne

di�erentiability naturally pops up in di�erent applications. Our purpose is to provide a systematic

analysis of this notion.

1See [25, Part II] as well as Reeds [19] and Fernholz [23].
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Outline In Section 3 we introduce a�ne di�erentiability. The main result, Lemma 17, shows that

weakly a�ne di�erentiable functions are hemidi�erentiable, that is, di�erentiable over line segments. A

mean value theorem, Theorem 18, is a consequence of this lemma. In Section 4 we discuss applications

to optimization. In particular, we establish a Danskin-type envelope theorem, Theorem 31, for weakly

a�ne di�erentiable functions.

Applications to statistics and economics are considered in Section 5. In risk theory, Theorem 34

provides a global perspective to the local expected utility analysis of Machina [17] (see also [6]). As

an illustration, we compute the local utilities for the quadratic model of Chew et al. [9] and for the

prospect theory model of Tversky and Kahneman [24]. In a �nal example we apply the envelope

theorem of Section 4 to a Bayesian statistical problem.

Basic a�ne di�erentiation often proves to be too weak in applications. For this reason, in Section

6 we o�er some stronger variants, non-trivial versions of the classical Hadamard and Frechet di�er-

entiation in normed vector spaces. We illustrate these notions with some applications in risk theory

and statistics.

2 Preliminaries

Throughout hX;X�i is a dual pair between two vector spaces X and X�, with generic elements x

and x�. When X is normed, X� is its topological dual, unless otherwise stated. The pairing map is

denoted by hx; x�i, with x 2 X and x� 2 X�. We refer to the � (X;X�)-topology as the weak topology

of X, while we refer to the � (X�; X)-topology as the weak* topology of X�. Let A be a subset of

X. Its annihilator, denoted by A?, is the set of all x� 2 X� that vanish on A, i.e., hx; x�i = 0 for all
x 2 A. Clearly, A? is a weak*-closed vector subspace of X�.

Throughout C denotes a convex subset of X. A point x 2 C is an algebraic interior point of C

if for every y 2 X there is " > 0 such that x + "y 2 C. The algebraic interior of C is denoted by

corC. A point x 2 C is an (algebraic) relative interior point of C if, for every y 2 a� C there is " > 0
such that x + "y 2 C. The relative interior of C is denoted by riC. For short, we call internal the

elements of riC. Clearly, corC � riC.
A function f : C ! R is a�ne if

f (tx+ (1� t) y) = tf (x) + (1� t) f (y)

for all x; y 2 C and all t 2 [0; 1].

De�nition 1 An a�ne function f : C ! R is extendable when it admits a weakly continuous linear
extension to the whole space X, that is, when there exist x� 2 X� and  2 R such that f (�) = h�; x�i+.

As well-known, a�ne functionals on C are not always extendable, even when weakly continuous

(cf. Example 13).

Let Y be a topological space, typically assumed to be metrizable. The set of all �nite signed Borel

measures is denoted by ca (Y ). The subset �(Y ) of ca (Y ) consists of all Borel probability measures.

We denote by Cb (Y ) the space of all bounded and continuous functions on Y .

The extension of an a�ne function may be not unique (when exists).

Proposition 2 Let f (�) = h�; x�i+  on X, with  2 R. An a�ne functional g : X ! R agrees with
f on C if and only if g (�) = h�; y�i + y� , where y

� 2 x� + (C � C)? and y� = f (�x) � h�x; y�i, with
�x 2 C arbitrarily �xed.
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Proof Let g (�) = h�; y�i + 1 be an a�ne functional on X such that, for each x 2 C, f (x) = g (x).

This implies that hx; x� � y�i is constant when x runs over C. That is, hx� y; y� � x�i = 0 when x
and y are distinct points of C. Hence, y� � x� 2 (C � C)?. Equivalently, y� 2 x� + (C � C)?. From
f (�x) = h�x; y�i+ 1 it follows that 1 = f (�x)� h�x; y�i.
To prove the converse, let g (�) = h�; y�i + y� be with y

� and y� given above. Tedious algebra

shows that

g (x) = hx� �x+ �x; y� � x� + x�i+ f (�x)� h�x; y�i = hx; x�i+  = f (x)

as desired. �

Thus, the representation of an a�ne functional on C is unique if and only if (C � C)? = f0g.
Since

(C � C)? = (C � x)? (1)

holds for any arbitrary point x 2 C, we have (C � C)? = f0g when corC 6= ;.
Uniquely extendable a�ne functionals can be characterized in �nite-dimensional spaces, as the

next known result shows.

Proposition 3 An a�ne functional f : C � Rn ! R is extendable. The extension is unique if and
only if intC 6= ;.

In normed vector spaces a less general result holds.

Proposition 4 An a�ne functional f : C ! R de�ned on a convex set C of a normed vector space

X is uniquely extendable if intC 6= ;. It is weakly continuous when f is locally bounded at some intC.

3 A�ne di�erentiability

3.1 Di�erential

We begin with the protagonist of our analysis.

De�nition 5 The a�ne directional derivative of a functional f : C ! R at a point x 2 C along the

direction y 2 C is given by

Df (x; y) = lim
t#0

f ((1� t)x+ ty)� f (x)
t

(2)

when this limit exists �nite.

When this limit exists �nite for all y 2 C, the map Df (x; �) : C ! R is well de�ned. It clearly
satis�es the following properties:

(i) Df (x;x) = 0;

(ii) Df (x; �) is homogeneous, i.e.,

Df (x; (1� �)x+ �y) = �Df (x; y) (3)

for all y 2 C and all � 2 [0; 1].
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The map Df (x; �) is, in general, not a�ne (see Example 7 below), a failure that motivates the
following taxonomy.2

De�nition 6 Let x 2 X. A functional f : C ! R is:

(i) weakly a�nely di�erentiable at x if Df (x; �) : C ! R is an a�ne functional;

(ii) a�nely di�erentiable at x if Df (x; �) : C ! R is an extendable a�ne functional.

Weak a�ne di�erentiability (for short, wa-di�erentiability) does not require any vector topology,

which is instead needed for a�ne di�erentiability (for short, a-di�erentiability). We call the map

Df (x; �) : C ! R the wa-di�erential of f at x when it is a�ne. When Df (x; �) is extendable, we call
it the a-di�erential of f at x; in this case, there is a pair (x�; ) 2 X� � R such that

Df (x; �) = h�; x�i+  (4)

This pair is not unique unless (C � C)? = f0g. Since Df (x;x) = 0, it follows that  = �hx; x�i and
so the a�ne di�erential admits the intrinsic representation

Df (x; y) = hy � x; x�i (5)

where the inessential scalar  has been dropped. In light of (1), equation (5) is independent of the

element x� chosen. With this, we call gradient of f at x any such equivalent x�. As it is unique up

to elements in (C � C)?, we have an equivalence class

[raf (x)] = x� + (C � C)? = x� + (C � x)? 2 X�= (C � C)? (6)

which is a weak*-closed a�ne space of X�. Here raf (x) is a representative element of this equivalent
class, so it stands for any element x� of this equivalence class.

Example 7 De�ne f : R2+ ! R by f (x1; x2) = x�1 x
�
2 , with �; � > 0. When � + � < 1, the

directional derivative at the origin 0 = (0; 0) does not exist. Instead, it exists when � + � = 1, with

Df (0; y) = f (y). But, f is not wa-di�erentiable at 0 since Df (0; �) is not a�ne. It is easy to see
that f is a-di�erentiable at 0 when �+ � > 1 and raf (0) = f0g is its unique gradient. N

It is desirable to have criteria ensuring a-di�erentiability. The following conditions are a direct

consequence of Propositions 3 and 4.

Proposition 8 Let f : C ! R be wa-di�erentiable at a point x 2 C. Then, f is a-di�erentiable at

x0 if either X = Rn or X is normed, x 2 intC and f is locally Lipschitz at x.

Proof The case X = Rn follows from Proposition 3. When X is normed, the local Lipschitz condition

at x 2 intC implies that jDf (x; y)j � L ky � xk and so that Df (x; �) is locally bounded at x.
Therefore, Proposition 4 yields the desired result. �

When f : C ! R is Gateaux di�erentiable at x 2 C, the Gateaux gradient rGf (x) 2 X� is given

by

lim
t!0+

f (x+ ty)� f (x)
t

= hy;rGf (x)i 8y 2 X

The next result shows that a�ne and Gateaux di�erentiability are equivalent only on corC, a set that

in most relevant cases is empty.

2Proposition 57 in Appendix provides conditions under which Df (x; �) is a�ne.
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Proposition 9 The function f : C ! R is a-di�erentiable at x 2 corC if and only if it is Gateaux

di�erentiable at x. In this case, raf (x) = rGf (x).

Here the a�ne gradient inherits the uniqueness of the Gateaux one.

Proof Let f be Gateaux di�erentiable at x 2 corC and let x� = rGf (x). For each y 2 C,

hy � x; x�i = lim
t!0+

f (x+ t (y � x))� f (x)
t

= Df (x; y)

Hence, x� 2 [raf (x)]. As x 2 corC, the set [raf (x)] is a singleton and so we can write x� = raf (x).
Conversely, let f be a-di�erentiable at x, with x� 2 [raf (x)]. Take y 2 X. It follows that x+ t0y 2 C
for some t0 > 0 small enough. It holds

t0 hv; x�i = ht0v; x�i = Df (x;x+ t0v) = lim
t!0+

f ((1� t)x+ t (x+ t0v))
t

= t0 hv;rGf (x)i

Hence, x� = rGf (x). This proves that [raf (x)] = frGf (x)g. �

Observe that when f has an extension ~f : X ! R which is Gateaux di�erentiable on C, it is

a-di�erentiable on C and

raf (x) = rG ~f (x) + (C � C)?

for all x 2 C.

3.2 Examples

We present a few examples to illustrate the concepts introduced so far.

Example 10 Given an interval I = [a; b], let NBV (I) be the vector space of the functions F : I ! R
of bounded variation that are right continuous on (a; b) and normalized, i.e., F (a) = 0. We consider

the standard duality between NBV (I) and the space C (I) of continuous function u : I ! R, with
pairing de�ned by hF; ui =

R b
a
udF where the integral is Riemann-Stieltjes.

If a functional T : C ! R de�ned on a convex subset of NBV (I) is a-di�erentiable at F , there is
a function uF 2 C (I) such that

DT (F ;G) =

Z b

a

uFd (G� F ) 8G 2 C

For instance, consider the convex set D = D [a; b] of all probability distributions on the interval (i.e.,
of all decreasing F 2 NBV (I) with

R b
a
dF = 1). In this case,

(D �D)? = span
�
1[a;b]

	
and so the gradient uF = raT (F ) is unique up to an additive constant. N

Example 11 Replace I with a metric space Y and consider the dual pair hca (Y ) ; Cb (Y )i. A func-
tional T : � (Y )! R is a�nely di�erentiable at � 2 �(Y ) if there is u� 2 Cb (Y ) such that

DT (�;�) =

Z
X

u�d (�� �) 8� 2 �(Y )

The gradient u� 2 Cb (Y ) is unique up to an additive constant. Indeed, if u 2 (� (Y )��(Y ))?,
then hu; �� �i = 0 for all �; � 2 �(Y ). By setting � = �x and � = �y, we then get u (x) = u (y) for

all x; y 2 Y . Hence, u is constant. N
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Example 12 Let S be a metric space and A a convex subset of Rn. Denote by C the convex set

of all norm-bounded (i.e., supS kukn < 1) and continuous maps u : S ! A. Given � 2 �(S) and
F : S �A! R, de�ne I : C ! R by

I(u) =

Z
F (s; u(s))d�(s)

Assume the following conditions:

(i) F (�; x) is Borel measurable for every x 2 A;

(ii) F (s; �) is wa-di�erentiable for every s 2 S, with di�erential DF (s; x; �);

(iii) there exists � : S ! R, with
R
�d� <1, such that

jF (�; x)� F (�; y)j � � (�) kx� ykn 8x; y 2 A

Under these conditions, I is well de�ned and wa-di�erentiable at each u 2 C, with

DI(u; g) =

Z
DF (s; u(s); g (s))d�(s) 8g 2 C

Indeed, by (iii) we have

1

t
jF (s; (1� t)u(s) + tg(s))� F (s; u(s))j � L (s) kg(s)� u(s)kn 8s 2 S

The desired result thus follows from the Dominated Convergence Theorem. N

Inspired by an example in Phelps [18], next we present a wa-di�erentiable function which is not

a-di�erentiable.

Example 13 Let C =
�
fxng 2 RN : 8n; jxnj � an

	
, where fang is a given scalar sequence with 0 <

an < 1 and
P

n an <1. Clearly, C is a closed and bounded convex subset of `2. The convex function
f : C ! R de�ned by

f (x) =

 X
n

xn

!2
is wa-di�erentiable at each x 2 C, with

Df (x; y) =

 
2
X
n

xn

!
�
X
n

yn � 2f (x) 8y 2 C

Clearly, Df (x; �) is a�ne on C. But, f is not a-di�erentiable at any x 2 C since there is no element u in
`2 such that (u; y) =

P
n yn for all y 2 C: Indeed, for eachm consider the point ym = (0; 0; ::; am; ::::) 2

C. It follows that umam = (u; ym) = am, namely, um = 1 for all n. But then u =2 `2.
The map y 7!

P
n yn is continuous. Indeed, if the sequence fymn g converges to fyng as m ! 1,

then it converges pointwise, i.e., ymn ! yn for every n. By the Dominated Convergence Theorem,P
n y

m
n !

P
n yn. Hence, Df (x; �) is weakly continuous. Finally, observe that corC is empty,

something not surprising in light of Proposition 4. N

A function B : C � C ! R is a bia�ne form when it is a�ne in each argument. It is extendable

when it can be extended to a bilinear form on X � X. An example of a bia�ne form is the map

B : C � C ! R de�ned by
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B (x; y) =

 X
n

xn

!
�
 X

n

yn

!
where C is the convex subset of `2 in Example 13. As already seen, this form is not extendable.

A bia�ne form B is symmetric when B (x; y) = B (y; x) for all x; y 2 C. The symmetrization of
a form B is given by

BS (x; y) =
1

2
[B (x; y) +B (y; x)]

Associated with a bia�ne form B there is the (a�ne) quadratic form Q : C ! R given by

Q (x) = B (x; x) = BS (x; x)

The wa-di�erentiability of bia�ne forms and of quadratic forms is easily checked, with wa-derivatives

DB (x1; x2; y1; y2) = B (x1; y2) +B (y1; x2)� 2B (x1; x2) (7)

and

DQ (x; y) = 2BS(x; y)�Q(x)

When DQ (x; �) is extendable we get the gradient raQ (x) = 2BS(x; �).

Example 14 The Mann-Whitney bia�ne form B : � (R)��(R)! R is given by

B (�; �) =

Z
F� (t) dF�(t) =

Z
R
F�d�

Here F� is the cumulative distribution function associated with � 2 �(R) and
R
F�dF� is a Lebesgue-

Stieltjes integral. This bia�ne form is used in statistics (see [13]). By (7),

DB (�; �;�1; �1) =

Z
(F�1 � F�) d�+

Z
F�d (�1 � �) =

Z
F�1d�+

Z
F�d�1 + 

where  is a scalar independent of �1 and �1. This wa-di�erential is not always extendable. It is,

however, extendable when F� and F� are continuos with bounded support, say contained in an interval

[a; b]. Indeed,Z
F�1d�+

Z
F�d�1 =

Z
F�1dF�+

Z
F�dF�1 =

Z b

a

F�1dF�+

Z
F�dF�1 = 1�

Z
F�dF�1+

Z
F�dF�1

where, by the continuity of the distribution functions, the integral
R b
a
F�1dF� is Riemann-Stieltjes.

3

Therefore, B is a-di�erentiable at (�; �), with gradient

raB (�; �) = (�F�; F�) 2 Cb (R)� Cb (R)

N

Example 15 A quadratic functional on � (Y ) is

Q (�) =

Z
Y�Y

 (x; y) d� (x)
 d� (y) (8)

where  2 Cb (Y � Y ). This functional is a-di�erentiable, with

raQ (�) =
Z
Y

[ (�; y) +  (y; �)] d� (y)

When Y is a compact interval and the kernel  is symmetric, this functional has been studied by [9].

It will be further discussed in Example 35. N
3In the last equality we used integration by parts (see, e.g., Theorem 14.10 of [4]).
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3.3 Mean value theorem

Let x; y 2 C and, for each t 2 [0; 1], set

xt = (1� t)x+ ty

Each function f : C ! R has a scalar auxiliary function 'x;y : [0; 1]! R de�ned by 'x;y (t) = f (xt).

De�nition 16 A function f : C ! R is hemidi�erentiable if, for all x; y 2 C, its auxiliary function
'x;y : [0; 1]! R is di�erentiable on [0; 1].4

We begin with a non-trivial lemma. To ease notation, when no confusion may arise we often omit

subscripts and just write '.

Lemma 17 If f : C ! R is wa-di�erentiable,5 then it is hemidi�erentiable, with

'0 (t) =
1

1� tDf (xt; y) = �
1

t
Df (xt;x) 8t 2 (0; 1) (9)

and

'0+ (0) = Df (x; y) ; '0� (1) = �Df (y;x)

As Df (xt; �) is a�ne, (9) is equivalent to

'0 (t) =
1

� � tDf (xt;x� ) (10)

for all (t; �) 2 (0; 1)� [0; 1] with � 6= t. With � = 0; 1 we get relations (9).

When f is a-di�erentiable on C, from (5) it follows immediately that, for each t 2 (0; 1),6

'0 (t) = hy � x;raf (xt)i (11)

Proof For each t 2 [0; 1] we have the following obvious algebraic relations

y � xt = (1� t) (y � x) and x� xt = t (x� y)

Now �x x; y 2 C and t 2 [0; 1). The limit

lim
h#0

' (t+ (1� t)h)� ' (t)
h

exists. Indeed,

' (t+ (1� t)h)� ' (t)
h

=
f (xt + h (1� t) (y � x))� f (xt)

h
=
f (xt + h (y � xt))� f (xt)

h

Hence,

lim
h#0

' (t+ (1� t)h)� ' (t)
h

= Df (xt; y)

We also have

lim
h#0

' (t+ (1� t)h)� ' (t)
h

= (1� t) lim
h#0

' (t+ (1� t)h)� ' (t)
(1� t)h = (1� t)'0+ (t)

4Di�erentiable on [0; 1] means right-di�erentiable at t = 0 and left-di�erentiable at t = 1.
5A function is \wa-di�erentiable" (\a-di�erentiable") when wa-di�erentiable (a-di�erentiable) at all points of its

domain.
6Recall that raf (xt) that is a representative of the equivalence class [raf (xt)], so (11) means '0 (t) = hy � x; x�i

for all x� 2 [raf (xt)].
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Hence,

'0+ (t) =
1

1� tDf (xt; y)

Use the same method for the left derivative '0�. Speci�cally, begin with the limit

lim
h"0

' (t+ th)� ' (t)
h

= � lim
k#0

' (t� tk)� ' (t)
k

= � lim
k#0

f (xt + kt (x� y))� f (xt)
k

= � lim
k#0

f (xt + k (x� xt))� f (xt)
k

= �Df (xt;x)

At the same time, we have

'0� (t) = lim
h"0

' (t+ th)� ' (t)
th

=
1

t
lim
h"0

' (t+ th)� ' (t)
h

= �1
t
Df (xt;x)

Since Df (xt; �) is a�ne, we obtain

0 = Df (xt;xt) = Df (xt; (1� t)x+ ty) = (1� t)Df (xt;x) + tDf (xt; y)

which implies
1

1� tDf (xt; y) = �
1

t
Df (xt;x) = '0� (t) = '0+ (t)

Hence, '0+ = '0� on (0; 1) and the proof is complete. �

It is apparent from the proof of this lemma that when f is not wa-di�erentiable, but has one-sided

directional derivatives, we can still infer that

'0+ (t) =
1

1� tDf (xt; y) and '0� (t) = �
1

t
Df (xt;x)

A remarkable consequence of the last lemma is a mean value theorem.

Theorem 18 (Mean Value Theorem) Let f : C ! R be wa-di�erentiable. For each x; y 2 C

there exists t 2 (0; 1) such that

f (y)� f (x) = 1

1� tDf (xt; y) (12)

When f is a-di�erentiable, we get

f (y)� f (x) = hy � x;raf (xt)i

Proof Let x; y 2 C. The auxiliary function ' (t) = f (xt) is continuous on [0; 1] and di�erentiable on

(0; 1). By the basic Mean Value Theorem, there exists t 2 (0; 1) such that

'0 (t) =
' (1)� ' (0)

1� 0 = ' (1)� ' (0)

By Lemma 17,
1

1� tDf (xt; y) = f (y)� f (x)

as desired. �
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3.4 A�ne calculus

To develop an e�ective a�ne calculus we need a slightly stronger notion of a�ne di�erentiability.

De�nition 19 A wa-di�erentiable function f : C ! R is ( radially) continuously wa-di�erentiable

if, for each x; y 2 C, the functions

t 7! Df (xt; y) and t 7! Df (xt;x) (13)

are both continuous on [0; 1].

For instance, it is easy to check that all bia�ne forms as well as all quadratic functionals are

radially continuously wa-di�erentiable.

By (9), we have

Df (xt;x) = �
t

1� tDf (xt; y)

As a consequence, in (13) the continuity of t 7! Df (xt; y) implies that of t 7! Df (xt;x) at all

t 2 [0; 1). Only at t = 1, the continuity of t 7! Df (xt;x) is a genuine assumption.

Proposition 20 If f : C ! R is continuously wa-di�erentiable, then

f (y)� f (x) =
Z 1

0

1

1� tDf (xt; y) dt

for all x; y 2 C.

When f is a-di�erentiable, we get

f (y)� f (x) =
Z 1

0

1

1� t hy � x;raf (xt)idt

Proof Consider the auxiliary function ' (t) = f (xt). By Lemma 17, '
0 (t) exists for all t 2 (0; 1).

Moreover, '0 is continuous on (0; 1) by the relation '0 (t) = (1� t)�1Df (xt; y) and by the continuity
of the �rst map in (13). On the other hand, by the continuity of �rst map in (13)

lim
t!0+

'0 (t) = lim
t!0+

(1� t)�1Df (xt; y) = Df (x; y) = '0+ (0)

Analogously, limt!1� '
0 (t) = '0� (1). As a result, '

0 is continuous on (0; 1) and bounded on [0; 1].

Hence,

f (y)� f (x) = ' (1)� ' (0) =
Z 1

0

'0 (t) dt =

Z 1

0

1

1� tDf (xt; y) dt

as desired. �

Example 21 According to Example 11, when T : � (Y ) ! R is a-di�erentiable by the Mean Value
Theorem (Theorem 18) there is t 2 (0; 1) such that

T (�)� T (�) = 1

1� t

Z
Y

u�td (�� �)

By Proposition 20, we then have

T (�)� T (�) =
Z 1

0

�
1

1� t

Z
Y

u�td (�� �)
�
dt

when T is radially continuously a-di�erentiable. N
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To characterize convexity for wa-di�erentiable functions we need the following monotonicity notion.

De�nition 22 A wa-di�erentiable function f : C ! R has a monotone wa-di�erential if

Df (x; y) +Df (y;x) � 0 (14)

for all x; y 2 C.

This de�nition has a sharper form for a-di�erentiable functions because (14) becomes

hy � x;raf (y)�raf (x)i � 0

With this, we can characterize convexity for wa-di�erentiable functions.

Proposition 23 Let f : C ! R be wa-di�erentiable. The following properties are equivalent:

(i) f is convex;

(ii) for all x; y 2 C,
f (y) � f (x) +Df (x; y) (15)

(iii) the wa-di�erential of f is monotone.

The convexity of a quadratic functional Q : C ! R is a simple illustration of this result. In view
of (14), we obtain the condition

Q (x) +Q (y)� 2BS (x; y) � 0 8x; y 2 C

When the bia�ne form is extendable, it becomes the familiar condition Q (x� y) � 0 of semide�nite
positivity for quadratic functionals.

Proof (i) implies (ii). By the Jensen inequality,

Df (x; y) = lim
t#0

f ((1� t)x+ ty)� f (x)
t

� lim
t#0

t (f (y)� f (x))
t

= f (y)� f (x)

as desired.

(ii) implies (iii). By adding up f (y) � f (x) + Df (x; y) and f (y) � f (x) + Df (x; y), we get

0 � Df (x; y) +Df (x; y).

(iii) implies (i). Consider the auxiliary function ' (t) = f (xt) on [0; 1] for arbitrary points x; y 2 C.
Let

xt1 = (1� t1)x+ t1y and xt2 = (1� t2)x+ t2y

with 0 < t1 < t2 < 1. It is easy to check that

xt2 =
1� t2
1� t1

xt1 +
t2 � t1
1� t1

y and xt1 =
t1
t2
xt2 +

t2 � t1
t2

x

By (3),

Df (xt2 ;xt1) = Df

�
xt2 ;

t1
t2
xt2 +

t2 � t1
t2

x

�
=
t2 � t1
t2

Df (xt2 ;x)

Df (xt1 ;xt2) = Df

�
xt1 ;

1� t2
1� t1

xt1 +
t2 � t1
1� t1

y

�
=
t2 � t1
1� t1

Df (xt1 ; y)

11



By adding up,

Df (xt2 ;xt1) +Df (xt1 ;xt2) = (t2 � t1)
�
1

t2
Df (xt2 ;x) +

1

1� t1
Df (xt1 ; y)

�
By (9),

Df (xt2 ;xt1) +Df (xt1 ;xt2) = (t2 � t1) ['0 (t1)� '0 (t2)] � 0

The �rst derivative '0 is thus nondecreasing, so ' is convex. Since this is true for any pair of points

x; y 2 C, we conclude that f is convex. �

Thanks to the previous results we can also relate gradients and subdi�erentials for convex func-

tionals. The subdi�erential of a convex function f : C ! R at x 2 C is the set

@f(x) = fx� 2 X� : 8y 2 C; f(y) � f (x) + hy � x; x�ig

while the (negative conical) polar A� � X� of a set A in X is given by

A� = fx� 2 X� : 8x 2 A; hx; x�i � 0g

For a convex set C, the normal cone at a point x 2 C is de�ned as NC (x) = (C � x)�.

Proposition 24 Let f : C ! R be a-di�erentiable and convex. For each x 2 C,

@f (x) = x� +NC (x) (16)

for all x� 2 [raf (x)]. Moreover, for each x 2 riC,

@f (x) = fraf (x)g

At non-internal points of C the subdi�erential of a convex function can thus be strictly larger

than its a-di�erential because the vector space (C � x)? can be strictly included in the normal cone
NC (x).

Proof Let x� 2 [raf (x)]. By (15),

f (y) � f (x) +Df (x; y) = f (x) + hy � x; x�i 8y 2 C

For an arbitrary element p� of (C � x)�, we have hy � x; p�i � 0. Consequently,

f (y) � f (x) + hy � x; x�i � f (x) + hy � x; x� + p�i

Hence, x� + p� is a subdi�erential. We thus proved the inclusion x� + (C � x)� � @f (x).

Conversely, let p� 2 @f (x). Then, f (y)� f (x) � hy � x; p�i and so

f (xt)� f (x) � t hy � x; p�i

for all y 2 C and t 2 [0; 1]. Dividing by t and letting t! 0, we get Df (x; y) � hy � x; p�i. If x� is a
gradient,

hy � x; x�i = Df (x; y) � hy � x; p�i =) 0 � hy � x; p� � x�i

That is, p� 2 x� + (C � x)�. This proves the converse inclusion @f (x) � x� + (C � x)�.
In sum, @f (x) = x� + NC (x). The equality @f (x) = raf (x) is a consequence of the fact that

(C � x)� = (C � x)? when x 2 riC. �

This proposition implies that subdi�erentials are not empty for a-di�erentiable convex functions.

Thus, a-di�erentiable convex functions are weakly lower semicontinuous.

Next we turn to the algebra of a�ne di�erentiability, which is similar to the standard one (we omit

the routine proof).

12



Proposition 25 Let f; g : C ! R be wa-di�erentiable at x 2 C. Then, the two functions f + g and

fg are wa-di�erentiable at x0, with

D (f + g) (x; y) = Df (x; y) +Dg (x; y)

and

D (fg) (x; y) = f (x)Dg (x; y) + g (x)Df (x; y)

Moreover, if h : R! R is di�erentiable at f (x), then h � f is wa-di�erentiable at x, with

D (h � f) (x; y) = h0 (f (x))Df (x; y)

A consequence is the following sum rule for subdi�erentials.

Proposition 26 If two convex functions f; g : C ! R are a-di�erentiable at x 2 C, then

@ (f + g) (x) = @f (x) + @g (x)

Proof It follows from the sum rule and from (16) by observing that (C � x)�+(C � x)� = (C � x)�.
Hence, if x� 2 [raf (x)] and y� 2 [rag (x)], we have

@ (f + g) (x) = x� + y� + (C � x)� = x� + (C � x)� + y� + (C � x)� = @f (x) + @g (x)

as desired. �

We close by considering the wa-di�erentiability of quasiconvex functionals.

Proposition 27 A wa-di�erentiable f : C ! R is quasiconvex if and only if

Df(x; y) > 0 =) f (y) > f (x) (17)

for all x; y 2 C.

Proof Let f : C ! R be wa-di�erentiable. The function f is quasiconvex if and only if, for all

x; y 2 C, its restrictions 'x;y (t) = f (xt) are quasiconvex. By Lemma 17, f is hemidi�erentiable.

Thus, f is quasiconvex if and only if, for all x; y 2 C,

'x;y (t2) � 'x;y (t1) =) '0x;y (t1) (t2 � t1) � 0 (18)

for all t1; t2 2 [0; 1]. By (10), it becomes

f (xt2) � f (xt1) =)
1

t2 � t1
Df(xt1 ;xt2)(t2 � t1) � 0

for all t1; t2 2 [0; 1]. By taking t1 = 1 and t2 = 1 we get the desired result. �

4 Optimization

We begin with a �rst-order condition for a (global) minimizer.

Proposition 28 Let f : C ! R be wa-di�erentiable. If x̂ 2 C is a minimizer of f , then

Df (x̂; y) � 0 8y 2 C (19)

with equality when x̂ 2 riC.

13



When f is a-di�erentiable, the �rst-order condition (19) takes the variational inequality form

hy � x̂;raf (x̂)i � 0 8y 2 C

Proof Let x̂ be a minimizer. Then, f (x̂t) � f (x̂) for all t 2 [0; 1] and y 2 C. Hence,

Df (x̂; y) = lim
t#0

f (x̂t)� f (x̂)
t

� 0

It remains to show that if x̂ 2 riC the wa-di�erential vanishes. Fix a point y 2 C that di�ers from x̂.

As x̂ 2 riC, there exist x 2 C and �t 2 (0; 1) such that (1� �t)x+ �ty = x̂. By Lemma 17, the function

' (t) = f (xt) is di�erentiable at �t and

'0 (�t) =
1

1� �tDf (x�t; y) =
1

1� �tDf (x̂; y)

On the hand ' has a minimizer at the interior point �t. Hence, '0 (�t) = 0 and so Df (x̂; y) = 0 for all

y 2 C. �

Example 29 Let C be a convex set in a pre-Hilbert space H. Given h 2 H, de�ne f : C ! R by
f(x) = kx� hk2. The function f is convex and a-di�erentiable, with Df(x̂; y) = 2hx̂� h; y � x̂i. By
Proposition 28, at the minimizer x̂ 2 C we have

hh� x̂; y � x̂i � 0 8y 2 C

This the well-known characterization of the projection onto a convex set. N

Let A be a topological space and f : A � C ! R a parametric objective function (here C is

interpreted a set of parameters). De�ne the value function v : C ! R by

v(x) = sup
a2A

f(a; x)

and the solution correspondence � : C � A by

� (x) = argmax
a2A

f(a; x)

We say that � is viable when � (x) 6= ; for all x 2 C.
Our �rst result provides an estimate for the wa-di�erential of the value function. A piece of

notation: for a �xed element a 2 A, we denote by Dfa(x; y) the wa-di�erential at x 2 C of the section
fa : C ! R of the objective function f .

Proposition 30 Let fa : C ! R be wa-di�erentiable for each a 2 A. If v is wa-di�erentiable and �
is viable, then for each x 2 C and each a 2 � (x),

Dv(x; y) � Dfa(x; y) 8y 2 C (20)

with equality when x 2 riC.

Proof Fix x 2 C and a 2 � (x). The function � : C ! R given by � (y) = v (y) � f (a; y) is wa-

di�erentiable. We have � � 0 and � (x) = 0. Hence, x is a minimizer and so the �rst-order condition
(19) gives the inequality (20). If x 2 riC we then get the desired equality. �

The next result, a variant of the classic Danskin Theorem (see [10]), provides conditions under

which the directional derivative of the value function exists.
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Theorem 31 Let � be viable. Given x; y 2 C, assume that f satis�es the following properties:

(i) the a�ne directional derivative Dfa(x; y) exists for all a 2 � (x);

(ii) for every sequence ftng � [0; 1] with tn # 0, there is a sequence in A, with terms an 2 � (xtn),
such that

lim sup
n!1

f(an; xtn)� f(an; x)
tn

� sup
a2�(x)

Dfa(x; y)

Then, the a�ne directional derivative Dv(x; y) exists, with

Dv(x; y) = sup
a2�(x)

Dfa(x; y)

In Section 5.4 we will apply this result.

Proof We �rst show that, for each y 2 C,

lim inf
t#0

v (xt)� v (x)
t

� sup
a2�(x)

Dfa (x; y) (21)

Fix y 2 C and pick a point a0 2 � (x). Take any sequence tn 2 (0; 1) with tn # 0. By de�nition,

v (xtn)� v (x)
tn

� f (a0; xtn)� f (a0; x)
tn

Hence,

lim inf
n!1

v (xtn)� v (x)
tn

� Dfa0 (x; y)

This is true for every sequence tn # 0. Consequently,

lim inf
t#0

v (xt)� v (x)
t

� Dfa0 (x; y)

As this is true for every a0 2 � (x), we get (21). To end the proof, let us prove that

lim sup
t#0

v (xt)� v (x)
t

� sup
a2�(x)

Dfa (x; y) (22)

Given a sequence tn # 0, de�ne fang via assumption (ii). We have:

v (xt)� v (x)
tn

=
f (an; xt)� v (x)

tn
=
f (an; xt)� f (an; x)

tn
+
f (an; x)� v (x)

tn
� f (an; xt)� f (an; x)

tn

In light of (ii) we have

lim sup
n!1

v (xt)� v (x)
tn

� lim sup
n!1

f (an; xt)� f (an; x)
tn

� sup
a2�(x)

Dfa(x; y)

We get (22) that, in turn, yields the desired result. �

5 Applications

5.1 Inuence curve

Let T : � (Y ) ! R be wa-di�erentiable. Using the identi�cation x 7! �x, based on Hampel [14] we

de�ne the inuence function I (�;T; �) : Y ! R by

I (x;T; �) = lim
t#0

T ((1� t)�+ t�x)� T (�)
t

= DT (�; �x)
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When T is a-di�erentiable,

I (x;T; �) =
Z
u�d (�x � �) = u� (x)�

Z
u�d�

where u� 2 [raT (�)]. Since the gradient u� is unique up to an additive constant, under the normal-
ization

R
u�d� = 0 we get

I (x;T; �) = u� (x) (23)

The inuence function thus completely pins down the a-di�erential of the functional T as � varies. Con-

versely, the inuence function agrees with the gradient under the normalization condition
R
u�d� = 0.

Example 32 The functional T : D [0; 1] ! R de�ned by T (F ) = F (x0), with x0 2 (0; 1), is wa-
di�erentiable. Indeed,

lim
t#0

T ((1� t)F + tG)� T (F )
t

= G (x0)� F (x0)

and the map G 7! DT (F ;G) = G (x0)� F (x0) is a�ne. The inuence function is given by

I (x;T; F ) = Gx (x0)� F (x0)

where Gx is the distribution function of the Dirac measure �x. Clearly, it is discontinuous at x0. By

(23), it should coincide with the continuous function uF . Hence, T is not a-di�erentiable at any point

F 2 D [0; 1]. N

Thus, the existence of the inuence function does not ensure a-di�erentiability. Next we show that

this is the case even the existence of a continuous inuence function (see also Example 2.2.3 of [23]).

Example 33 De�ne the convex functional T : D [0; 1]! R by

T (F ) =
X
x2[0;1]

[F (x)� F (x�)]� (24)

with � > 1. This functional measures the jumps of F . The series is well de�ned since there are at

most countably many jumps. Clearly,X
x2[0;1]

[F (x)� F (x�)]� �
X
x2[0;1]

[F (x)� F (x�)] � 1

and the sum is �nite. It is easy to see that T is wa-di�erentiable, with

DT (F ;Gx) = ��T (F ) + � (F (x)� F (x�))��1

If the distribution F is continuous, then DT (F ;Gx) = 0. We infer that the gradient should vanish ev-

erywhere and, by Theorem 18, F would be constant, a contradiction. Hence, T is not a-di�erentiable.

N

5.2 Multi-utility representations

Let us now interpret an element � 2 �(Y ) as a lottery with prizes in a metric space Y . A decision
maker (DM) has a preference (binary) relation % over � (Y ) represented by a utility function U :

� (Y )! R, namely,
� % �() U (�) � U (�)
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We introduce the auxiliary subrelation %� de�ned by

� %� �() ��+ (1� �) � % ��+ (1� �) �

for all � 2 [0; 1] and all � 2 �(Y ). It captures the comparison over which the DM feels sure (see [12]

and [5]).

In the next theorem raU (�) is understood to be a normalized gradient. For instance, raU (�) =
u� with

R
u�d� = 0, that is, the inuence function associated with the probability measure �. More-

over, we denote by ImraU � Cb (Y ) the image fraU (�) : � 2 �(Y )g.

Theorem 34 If % is a preference relation with a-di�erentiable utility function U , then

� %� �()
Z
ud� �

Z
ud� 8u 2 ImraU

In the theory of risk, since Machina [17] the functions u 2 ImraU are known as local utilities.

Theorem 34 formalizes the idea that, individually, each local utility models a local expected utility

behavior of %, but jointly all local utilities characterize a global expected utility feature of %.

Proof De�ne %̂ by
� %̂�()

Z
ud� �

Z
ud� 8u 2 ImraU

Assume that � %̂�. Let � 2 �(Y ) and � 2 (0; 1). By the Mean Value Theorem (Theorem 18),

� = U (��+ (1� �) �)� U (��+ (1� �) �) = � hraU (�) ; �� �i

where � = � [(1� t)�+ t�] + (1� �) � for some t 2 (0; 1). Since � %̂�, by setting u� = raU (�) we
have

� = �

�Z
u�d��

Z
u�d�

�
� 0

that is, � %� �. Conversely, assume � %� � and pick any element � 2 �(Y ). It follows that, for each
t 2 [0; 1],

(1� t) � + t� % (1� t) � + t�

Hence, for t > 0,
U ((1� t) � + t�)� U (�)

t
� U ((1� t) � + t�)� U (�)

t

Letting t # 0, we get hraU (�) ; �� �i � hraU (�) ; �� �i. Namely, hraU (�) ; �i � hraU (�) ; �i.
That is, � %̂� as desired. �

The next example is based on [9].

Example 35 De�ne the utility function U : � (Y )! R by

U (�) =

Z
 (x; y) d� (x)
 d� (y)

where  (x; y) is a symmetric, continuous and bounded function on Y � Y . In Example 15 we saw

that, up to a constant,

raU (�) = u� =

Z
 (�; y) d� (y)

Therefore,

ImraU =
�Z

 (�; y) d� (y) : � 2 �(X)
�
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By Theorem 34,

� %� �()
Z
 (x; y) d� (x)
 d� (y) �

Z
 (x; y) d� (x)
 d� (y)

for all � 2 �(Y ). Clearly, this is equivalent to

� %� �()
Z
 (x; y) d� (x) �

Z
 (x; y) d� (x) 8y 2 X

N

5.3 Prospect theory

To each monetary lottery � 2 �(R) we associate its distribution function F� (x) = � ((�1; x]). Fix
a nonatomic positive Borel measure � on the real line and consider the utility function U : � (R)! R
given by

U (�) =

Z
[0;1]

w+ (1� F� (x)) d� (x)�
Z
[�1;0]

w� (F� (x)) d� (x) (25)

where w+; w� : [0; 1] ! [0; 1] are two strictly increasing and continuously di�erentiable maps. In-

stances of this utility function appear in the Prospect Theory of Tverski and Kahneman [24] (see

Wakker [26]). The utility function U is wa-di�erentiable:7

DU (�;�) = lim
t#0

U (�+ t (�� �))� U (�)
t

= �
Z
[0;+1]

w0+ (1� F� (x)) (F� � F�) d� (x)�
Z
[�1;0]

w0� (F� (x)) (F� � F�) d� (x)

=

Z
R
'� (x) (F� (x)� F� (x)) d� (x)

where ' is the bounded scalar function

'� (x) =

8<: w0+ (1� F� (x)) if x � 0

w0� (F� (x)) otherwise

It is not obvious whether DU (�; �) is extendable or not. To prove this we must use integration by
parts for Riemann-Stieltjes integrals. Set d� = '�d� and integrate �rst on a �nite interval. By the

Dominated Convergence Theorem,Z
R
'� (x) (F� (x)� F� (x)) d� (x) = lim

R!+1

Z
[�R;R]

'� (x) (F� (x)� F� (x)) d� (x)

Hence,Z
[�R;R]

'� (x) (F� (x)� F� (x)) d� (x) =
Z
[�R;R]

(F� (x)� F� (x)) d� (x) =
Z R

�R
(F� (x)� F� (x)) d�� (x)

where the last integral is Riemann-Stieltjes, and the function �� : R! R de�ned by

�� (x) =

Z
[�1;x]

'� (t) d� (t) (26)

7Continuous di�erentiability of w+ and w� implies their Lipschitzianity, so we can apply the Dominated Convergence

Theorem.
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is bounded and absolutely continuous. By the integration-by-parts formula,Z R

�R
(F� (x)� F� (x)) d�� (x) = [(F� (x)� F� (x))�� (x)]R�R �

Z R

�R
�� (x) d (F� � F�)

= [(F� (x)� F� (x))�� (x)]R�R +
Z
[�R;R]

�� (x) d (�� �)

Letting R!1, we �nally get

DV (�;�) =

Z
R
�� (x) d (�� �) = h��; �� �i

since [(F� (x)� F� (x))�� (x)]R�R ! 0 as �� is bounded.

In sum, U is a-di�erentiable and its gradient is

raU (�) = �� 2 Cb (R)

Let % be a preference relation on � (R) represented by U . For its subrelation %� we thus have the
following consequence of Theorem 34,

Proposition 36 Let �; � 2 �(R). It holds, for each � 2 �(R),

� %� �()
Z
R
'� (x) (1� F� (x)) d� (x) �

Z
R
'� (x) (1� F� (x)) d� (x) (27)

Proof By Theorem 34, � %� � if and only if, for each � 2 �(R),
R
�v (t) d� (t) �

R
�v (t) d� (t). By

Fubini's Theorem,Z
�v (t) d� (t) =

Z
d� (t)

Z
I[�1;t] (x)'� (x) d� (x) =

Z
d� (x)'� (x)

Z
I[x;+1] (t) d� (t)

where we used the relation I[�1;t] (x) = I[x;+1] (t). Hence,Z
�v (t) d� (t) =

Z
'� (x) (1� F� (x�)) d� (x) =

Z
'� (x) (1� F� (x)) d� (x)

where the last equality is true because � is nonatomic. This proves (27). �

5.4 Bayesian robustness

Let � be a parameter space and X a sample space. For any given sample x 2 X , a posterior functional
�x : � (�) ! R maps a prior distribution � 2 �(�) to a scalar representing a posterior statistic of
interest. For example, the posterior mean is given by �x(�) =

R
�d�x(�), with �x being the Bayesian

update of �.

Bayesian robustness (see, e.g., [2] and [3]) investigate how posterior outcomes vary under di�erent

prior speci�cations, often by examining the range of �x over a set of priorsM� �(�). WhenM is

convex, our methods can be used to compute such a range. Indeed, if �1; �2 2 �(�) are such that
�x(M) = [�x(�1); �x(�2)], then by Proposition 28 it follows that

inf
�2M

D�x(�1; �) = sup
�2M

D�x(�2; �) = 0

These two necessary conditions can be used to develop numerical algorithms (see [1]).

Another statistical functional of interest is the expected posterior loss of a Bayesian estimator.

Formally, denote by a 2 A the choice of the estimator. Given a loss function ` : A � � ! R and a
prior � 2 �(�), the expected loss L(�) of the Bayesian estimator is

L(�) = inf
a2A

Z
`(a; �)d�(�)
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Given an alternative prior � 2 �(�), the directional derivative DL(�; �) captures the sensitivity of
the estimator to the prior � (see [16] and also [22] for applications in economics). In the rest of this

subsection we show that, thanks to Theorem 31, we are able to compute DL(�; �) in important cases

of interest, allowing for an unbounded set of parameters (as common in applications).

So, let A = � = R. Consider �; � 2 �(R) with �nite �rst moment. To apply Theorem 31 we

study the related optimization problem

L� (�) = sup
a2A

Z
�`(a; �)d�(�) = sup

a2R
U (a; �)

where U (a; �) =
R
� ja� �j d� (�). The next result is an application of the earlier Danskin-type

theorem (Theorem 31).

Proposition 37 The a�ne directional derivative DL� (�; �) exists, with

DL� (�; �) = sup
a2�(�)

DUa (�; �) = sup
a2�(�)

Z
ja� �jd�(�)�

Z
ja� �jd�(�) (28)

Proof As well-known, the set � (�) of maximizers of the section Ua for � 2 �(R) is a median value
of the distribution F�. Speci�cally, a point a 2 � (�) is characterized by the equations

F� (a) �
1

2
and F�

�
a�
�
� 1

2
(29)

The set
S
t2[0;1]� ((1� t)�+ t�) is contained into a compact interval K of R (just pick any compact

interval that contains the sets of points 1=2� � � F�(x) � 1=2+ � and 1=2� � � F�(x) � 1=2+ � for
some 0 < � < 1=2). By convexity, � ((1� t)�+ t�) � K for all t 2 [0; 1]. Let us show that the two
assumptions of Theorem 31 are satis�ed. Clearly, Ua is wa-di�erentiable and its gradient is

DUa (�; �) =

Z
ja� �jd�(�)�

Z
ja� �jd�(�)

Hence, (i) holds. Take tn # 0 and let fang � K be any sequence with an 2 � ((1� tn)�+ tn�). In
view of Theorem 31-(ii), consider any subsequence fankg such that the sequence

U (ank ; (1� tnk)�+ tnk�)� U (ank ; �)
tnk

(30)

converges. As K is compact, without loss of generality (passing if needed to a further subsequence)

we can assume that the sequence fankg converges to a point �a.

Claim It holds �a 2 � (�).

Proof For any " > 0 we have an � �a+ " for n su�ciently large. By monotonicity,

1

2
� (1� tn)F� (an) + tnF� (an) � (1� tn)F� (�a+ ") + tnF� (�a+ ")

As n ! 1 we get 1=2 � F� (�a+ "). Since F� is right-continuos we have 1=2 � F� (�a) which is the

�rst condition of (29). As to the second one, begin now with an � �a� ". Hence, an � � � �a� "� �

for any � > 0. Thus

(1� tn)F� (�a� "� �) + tnF� (�a� "� �) � (1� tn)F� (an � �) + tnF� (an � �) �
1

2

As n ! 1, we get F� (�a� "� �) � 1=2 for all " + � > 0. Hence, condition (29) is true and so

�a 2 � (�). �
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By this Claim, we can write

lim
k!1

U (ank ; (1� tnk)�+ tnk�)� U (ank ; �)
tnk

= lim
k!1

Z
jank � �jd�(�)�

Z
jank � �jd�(�)

=

Z
j�a� �jd�(�)�

Z
j�a� �jd�(�) = DU�a (�; �) � sup

a2�(�)
DUa (�; �)

This is the case for every subsequence fankg for which (30) has a limit. Consequently,

lim sup
n!1

U (an; (1� tn)�+ tn�)� U (an; �)
tn

� sup
a2�(�)

DUa (�; �)

and so assumption (ii) holds. By Theorem 31 we thus have (28). �

6 Variations and extensions

6.1 Hadamard and strict di�erentiability

Endow the convex set C with a topology �ner than (or equal to) than the relative weak topology.

This �ner topology is assumed to be metrizable by a metric �.8 This allows us to restrict ourself to

the following sequential formulation of the Hadamard directional derivative, adapted to our setting.9

De�nition 38 The ( a�ne) Hadamard directional derivative of f : C ! R at x 2 C along the

direction y 2 C is given by

DHf (x; y) = lim
n!1

f ((1� tn)x+ tnyn)� f (x)
tn

when the limit exists �nite for every sequence tn # 0 and every sequence fyng in C with � (yn; y)! 0.

The function f is called Hadamard wa-di�erentiable at x if DHf (x; �) is a�ne. It is called

Hadamard a-di�erentiable at x if DHf (x; �) is extendable. Analogously, rHf (x) 2 X� denotes a

representative of the equivalence class of Hadamard gradients.

De�nition 39 A function f : C ! R is strictly wa-di�erentiable at x if there exists an a�ne

functional DSf (x; �) : C ! R such that, for each y 2 C,

DSf (x; y) = lim
n!1

f ((1� tn)xn + tny)� f (x)
t

for every sequence tn # 0 and every sequence fxng � C with � (xn; x)! 0.

It is worth mentioning a stronger notion of di�erentiability that combines the two previous ones.

De�nition 40 A function f : C ! R is strictly Hadamard wa-di�erentiable at x if there exists an
a�ne functional DSHf (x; �) : C ! R such that, for each y 2 C,

DSHf (x; y) = lim
n!1

f ((1� tn)xn + tnyn)� f (xn)
tn

for every sequence tn # 0 and all sequences fxng and fyng in C with � (xn; x)! 0 and � (yn; x)! 0.

8Usually the metric � can be extended to the vector space X. In this case the topology � is compatible with the

vector structure of the space and � inherits several nice properties. However, this does not signi�cantly a�ect our

analysis.
9We omit alternative Hadamard formulations related to compact di�erentiability (see [20]).
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Example 41 The quadratic functional Q : � (Y )! R given by

Q (�) =

Z
 (x; y) d� (x)
 d� (y)

with  symmetric (see Example 15), is strictly Hadamard wa-di�erentiable under the Prokhorov

metric when Y is a Polish space. Indeed, let �n =) �, �n =) � and tn # 0: Then,

Q ((1� tn)�n + tn�n)�Q (�n)
tn

= tnQ (�n) + (tn � 2)Q (�n) + 2 (1� tn)
Z
 (x; y) d�n 
 d�n

As Y is Polish, �n =) � and �n =) � imply �n
 �n =) �
 �. Hence, the limit of this ratio exists,
with DSHQ (�;�) = �2Q (�) + 2

R
 (x; y) d�
 d�. N

This example can be easily generalized by showing that a quadratic functional Q : C ! R is strictly
Hadamard wa-di�erentiable under a metric � when the associated bia�ne form BS is �-continuous on

C � C. To further elaborate, we need to introduce some classes of metrics.

De�nition 42 A metric � on C is:

(i) convex if

� (x; �y1 + (1� �)y2) � �� (x; y1) + (1� �)� (x; y2) (31)

for all x; y1; y2 2 C and all � 2 [0; 1];

(ii) homogeneous if

� (x; x+ � (y � x)) = �� (x; y)

for all x; y 2 C and all � 2 [0; 1].

For instance, the Prokhorov metric on � (Y ), with Y metric separable, is equivalent to the convex

Dudley metric (see Theorem 11.3.3 of [11]). With this, next we establish couple of di�erentiability

criteria.

Proposition 43 Let � be convex. Let f : C ! R be wa-di�erentiable in a �-neighborhood of a point
�x 2 C.

(i) If the map x 7! Daf (x; y) is �-continuous at �x for every y 2 C, then f is strictly wa-di�erentiable
at �x.

(ii) If the map (x; y) 7! Daf (x; y) is �-continuous at (�x; y) for every y 2 C, then f is strictly

Hadamard wa-di�erentiable at �x.

Proof Let x; y 2 C and f be wa-di�erentiable on U" (�x)\C, where U" (�x) is a �-neighborhood. Since
� is convex,

� (xt; �x) � (1� t) � (x; �x) + t� (y; �x) � � (x; �x) + t� (y; �x)

Consequently, taking the points xn such that � (xn; �x) < "=2 and 0 < tn < "= [2� (y; �x)], then the

points xn + tn (y � xn) and xn belong to the neighborhood U" (�x). By Theorem 18,

f (xn + tn (y � xn))� f (xn) =
1

1� �n
Df (xn + �ntn (y � xn) ;xn + tn (y � xn))

for some �n 2 (0; 1). On the other hand,

xn + tn (y � xn) =
�
1� tn
1� �ntn

�
[xn + �ntn (y � xn)] +

�
(1� �n) tn
1� �ntn

�
y
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Therefore, by (3) we get

f (xn + tn (y � xn))� f (xn)
tn

=
1

1� �ntn
Df (xn + �ntn (y � xn) ; y)

Letting tn # 0 and � (xn; �x) ! 0 the limit exists and is equal to DSf (�x; y). The second statement is

similarly proved. �

Here is a kind of converse of the previous statement.

Proposition 44 Let f : C ! R be strictly Hadamard wa-di�erentiable at �x 2 C. If the directional

derivative Df (x; y) exists in a �-neighborhood of the point �x, then Df (�; �) is �-continuous at (�x; y)
for all y 2 C.

Likewise, if f is strictly wa-di�erentiable at �x, then Df (� ; y) is �-continuous at �x.

Proof Fix y 2 C and consider two sequences fxng ; fyng � C so that � (yn; y)! 0 and � (xn; �x)! 0

and such that fxng is contained into the claimed neighborhood of �x. Fix " > 0. For every n there is
tn 2 (0; 1) so that ����f ((1� tn)xn + tnyn)� f (xn)tn

�Df (xn; yn)
���� � "

2
:

The sequence ftng can be chosen so that tn # 0. The hypothesis of strict Hadamard wa-di�erentiability
implies that, for all n su�ciently large,����f ((1� tn)xn + tnyn)� f (xn)tn

�DHf (�x; y)

���� � "

2

This yields jDf (xn; yn)�DHf (�x; y)j � ". Hence, Df (xn; yn) ! DHf (�x; y) as � (yn; y) ! 0 and

� (xn; �x)! 0, which is the desired continuity property. �

Next we establish a noteworthy continuity consequence of Proposition 43.

Proposition 45 If f : C ! R is strictly Hadamard wa-di�erentiable, then it is �-continuous.

Proof Let x 2 C. Take a sequence fxng � C such that � (xn; x) ! 0. By applying the Mean Value

Theorem (Theorem 18) to the two points x and xn, there exists a sequence ftng � (0; 1) such that

f (xn)� f (x) =
1

1� tn
Df ((1� tn)x+ tnxn;xn) = �

1

tn
Df ((1� tn)x+ tnxn;x) (32)

Partition the elements of the sequence ftng so to obtain two �nite or in�nite subsequences for which
either tn 2 (0; 1=2) or tn 2 [1=2; 1) : For the elements that fall into (0; 1=2) we have (1� tn)�1 < 2.

Analogously, it holds
���t�1n �� � 2 for the points of the sequence that fall into [1=2; 1). By Proposition

43,

Df ((1� tn)x+ tnxn;xn)! Df (x;x) = 0

as well as

Df ((1� tn)x+ tnxn;x)! Df (x;x) = 0

Passing, if needed, to subsequences, in light of (32) we infer that f (xn)� f (x)! 0 as � (xn; x)! 0.

�

Let us illustrate our Hadamard results with some examples.
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Example 46 (i) The functional T (F ) = F (x0) of Example 32 is wa-di�erentiable, with DT (F ;G) =

G (x0)�F (x0). By Proposition 43, T is strictly wa-di�erentiable at every point F which is continuous
at x0 under the Prokhorov metric. Instead, under the Kolmogorov metric �1,

10 the functional T is

strictly Hadamard wa-di�erentiable at any point F: Indeed,

jDT (F ;G)�DT (F1;G1)j � jG (x0)�G1 (x0)j+ jF (x0)� F1 (x0)j � kG�G1k1 + kF � F1k1

By Proposition 43, the continuity of DT (� ; �) delivers the desired result.
(ii) De�ne T : � (Y ) ! R by T (�) =

R
fd�, with f : Y ! R bounded and Borel measurable.

Endow �(Y ) with the metric �V (�; �) = k�� �kV generated by the variation norm.11 Clearly, T is
wa-di�erentiable (but not a-di�erentiable if f is not continuos), with DT (�;�) =

R
fd (�� �). By

Proposition 43, T is strictly Hadamard wa-di�erentiable at every � 2 �(Y ). Indeed,

jDT (�;�)�DT (�1;�1)j =
����Z fd (�� �)�

Z
fd (�1 � �1)

����
=

����Z fd (�� �1) +
Z
fd (�1 � �)

���� � ����Z fd (�� �1)
����+ ����Z fd (�1 � �)

����
� kfk1 k�� �1kV + kfk1 k�1 � �kV

(iii) In light of Example 12, it is easy to check that, if F (s; �) is strictly Hadamard wa-di�erentiable
for the Euclidean metric of Rn; then the functional I : C ! R is strictly Hadamard wa-di�erentiable
for the uniform metric �1(u; v) = supS ku� vkn. N

6.2 Frechet di�erentiability

We begin with a notion of wa-di�erentiability closely related to the uniform convergence over bounded

sets of the directional derivative.

De�nition 47 A function f : C ! R is boundedly wa-di�erentiable at x 2 C if there exists a

�-continuous and a�ne functional A : C ! R such that

lim
n!1

�
f ((1� tn)x+ tnyn)� f (x)

tn
�A (yn)

�
= 0 (33)

for every sequence tn # 0 and every �-bounded sequence fyng in C.

By setting yn = x, one gets A (x) = 0. Moreover, since �-convergent sequences are �-bounded, a

boundedly wa-di�erentiable function at x 2 C is also Hadamard wa-di�erentiable, with DHf (x; �) =
A (�).

Proposition 48 Let � be convex. A function f : C ! R is boundedly wa-di�erentiable at x 2 C if

and only if the limit (33) exists �nite for all sequences fyng in some circular neighborhood B" (x) of
the point x.

Proof An implication is obvious as B" (x) is a bounded set. Suppose now that the limit exists �nite

for each sequence in some B" (x). Fix a sequence tn # 0 and any �-bounded sequence fyng � C. From

� (x; (1� �)x+ �yn) � �� (x; yn)

10That is, �1 (F;G) = sup jF (t)�G (t)j.
11Recall that k�kV = sup

���R fd��� : f 2 Cb (Y )	 for � 2 ca (Y ).
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it follows that, for � > 0 is su�ciently small, the sequence zn = (1� �)x+�yn belongs to B" (x)\C
for all n. By setting �n = tn=�, we can write

lim
n!1

�
f (x+ �n (zn � x))� f (x)

�n
�A (zn)

�
= 0

Coming back to the old variables, we get the limit (33). Observe that A (zn) = A ((1� �)x+ �yn) =
�A (yn). �

We now introduce Frechet wa-di�erentiability. The convexity of the metric � is a convenient

assumption as it will be readily seen (see Proposition 50).

De�nition 49 A function f : C ! R is Frechet wa-di�erentiable at x 2 C if there exists a �-

continuous and a�ne functional A : C ! R, with A (x) = 0, such that

lim
n!1

f (xn)� f (x)�A (xn)
� (xn; x)

= 0 (34)

for every sequence fxng in C with � (xn; x)! 0.

We can also formulate a \strict" version in which we have

lim
n!1

f (yn)� f (xn)�A (yn)
� (xn; yn)

= 0 (35)

for all � (xn; x)! 0 and � (yn; x)! 0.

Proposition 50 Let � be convex. If f : C ! R is Frechet wa-di�erentiable at x 2 C, then it is

boundedly wa-di�erentiable at x.

Proof Assume (34). Given a sequence tn # 0 and any bounded sequence fxng, set zn = (1� tn)x+
tnxn. Thanks to the convexity of �, we have � (x; zn) � tn� (x; xn). Therefore, � (x; zn)! 0. In light

of (34),

f (zn)� f (x)�A (zn) = � (zn; x) o (1)

and

f ((1� tn)x+ tnxn)� f (x)� tnA (xn) = tn

�
� (zn; x)

tn

�
o (1) = o (tn)

But t�1n � (zn; x) � � (x; xn), which is bounded. Therefore,

f ((1� tn)x+ tnxn)� f (x)� tnA (xn) = o (tn)

Hence, f is boundedly wa-di�erentiable at x. �

A consequence of this proposition is that the a�ne function A in (34) is unique (if exists), with

DF f (x; �) = A (�). Moreover, a Frechet wa-di�erentiable function f : C ! R is Hadamard wa-

di�erentiable, with DF f (x; �) = DHf (x; �).
Condition (34) is a classical Frechet condition in which a distance replaces a norm. In fact, (34)

can be written, as � (y; x)! 0,

f (y) = f (x) +DF f (x; y) + o (� (y; x))

When DF f (x; �) is extendable, it becomes

f (y) = f (x) +rF f (x) (y � x) + o (� (y; x))

Next we give a converse of the last result.
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Proposition 51 Let � be homogeneous. If f : C ! R is boundedly wa-di�erentiable at x 2 int� C,
then it is Frechet wa-di�erentiable at x.

Proof Let f be boundedly wa-di�erentiable at x. As x 2 int� C, there is " > 0 such that � (x; y) � "

implies y 2 C. Let fxng be any sequence in C such that � (xn; x)! 0. Without loss of generality, we

can assume that xn 6= x for all n. De�ne the new sequence

yn =
1

tn
xn +

�
1� 1

tn

�
x ; tn =

� (xn; x)

"

By construction, xn = (1� tn)x+ tnyn. Moreover, since � is homogeneous,

� (x; xn) = tn� (x; yn)

Hence, � (x; yn) = " and thus it is a �-bounded sequence contained in C. Using this sequence in (33)

we get

lim
n!1

f ((1� tn)x+ tnyn)� f (x)� tnA (yn)
tn

= 0

As A (xn) = tnA (yn), we obtain

lim
n!1

f (xn)� f (x)�A (xn)
� (xn; x)

= 0

Therefore, f is Frechet wa-di�erentiable, with DF f (x; �) = A (�). �

Example 52 The quadratic functional Q : � (Y )! R given by

Q (�) =

Z
 (x; y) d� (x)
 d� (y)

is boundedly wa-di�erentiable for any metric when Y is Polish. Indeed, for any sequence f�ng � �(X)
and tn # 0,

Q ((1� tn)�+ tn�n)�Q (�)
tn

�DQ (�;�n) = tnQ (�) + tnQ (�n)� 2tn
Z
 (x; y) d�
 d�n

This quantity vanishes as n!1. This fact does not imply that Q is Frechet wa-di�erentiable, as it

will be momentarily seen.

The quadratic functional Q is Frechet wa-di�erentiable for the variation metric. Indeed,

Q (�n)�Q (�)�DQ (�;�n) = Q (�n � �)

and so

jQ (�n � �)j =
����Z  (x; y) d (�n � �)
 d (�n � �)

���� = ����d (�n � �) (y)Z  (x; y) d (�n � �) (x)
����

� k k1 k�n � �kV
����Z d (�n � �)

���� � k k1 k�n � �k2V
This implies

Q (�n)�Q (�)�DQ (�;�n)
�V (�n; �)

! 0

as �V (�n; �)! 0 and so (34) holds.

The quadratic functional may fail to be Frechet wa-di�erentiable. Take Y = R and set  (x; y) =
f (x)_ f (y), where f : R! R is non-constant and di�erentiable. Consider the Prokhorov metric �P .
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Pick a point x 2 R for which f 0 (x) 6= 0, say f 0 (x) > 0 (the case f 0 (x) < 0 is similar). Let y > x be

su�ciently close to x. Then,

Q (�y)�Q (�x)�DQ (�x; �y) = Q (�y � �x) = f (x) + f (y)� 2f (y) = f (x)� f (y)

Since �P (�y; �x) = min fjy � xj ; 1g, it follows that

lim
x#x

Q (�y � �x)
�P (�y; �x)

= lim
x#x

f (x)� f (y)
y � x = �f 0 (x) 6= 0

Hence, Q is not Frechet wa-di�erentiable at �x. N

Example 53 De�ne T : D ! R by

T (F ) =

Z
[F (x)� F0 (x)]2 dF0 (x)

where D is the collection of all probability distribution on R. For an empirical distributions Fn, T (Fn)
is the Cramer-von Mises test statistic for the test problem H0: F = F0 versus H1: F 6= F0.

The wa-di�erential of T is

DT (F ;G) = 2

Z
(F � F0) (G� F ) dF0 8G 2 D

Notice that DT (F0; �) = 0. Indeed, T is a convex functional with F0 as a minimizer. We show that T
is strictly Frechet wa-di�erentiable at every point F under the Kolmogorov metric �1 (see also [21]).

Let �1 (Fn; F )! 0 and �1 (Gn; F )! 0 be two sequences. Some tedious algebra shows that

R = T (Gn)� T (Fn)�DT (Fn;Gn) =
Z
(Gn � Fn)2 dF0

Hence,

jRj � [�1 (Gn; Fn)]2 � �1 (Gn; Fn) [�1 (Gn; F ) + �1 (F; Fn)] = o (�1 (Gn; Fn))

which is (35). N

Interpret the functional � = T (F ) as the parameter of an unknown population { more generally

� = T (�) ; with � 2 �(Y ). Inferences about � are usually based on the statistic �̂ = T (Fn), where

Fn is the empirical distribution

Fn =
1

n

nX
i=1

Gxi

If T is a-di�erentiable, we have

T (Fn) = T (F ) +

Z
raT (F ) d (Fn � F ) +R (F ;Fn)

where R (F ;Fn) is the remainder. By setting raT (F ) = uF (x) (the inuence function, i.e., the

normalized gradient), we obtain

T (Fn) = T (F ) +

Z
uFdFn �

Z
uFdF +R (F ;Fn) = T (F ) +

1

n

nX
i=1

uF (xi) +R (F ;Fn)

Suppose that an appropriately de�ned notion of di�erentiability guarantees that

R (F ;Fn) = op

�
1p
n

�
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The normalization ensures that the mean value
R
uF (x) dF (x) is zero: By assuming that �

2 =R
u2F (x) dF (x) is �nite, then

p
n [T (Fn)� T (F )] =

p
n

nX
i=1

uF (xi) + op (1)

Slutsky's Lemma and the central limit theorem imply the asymptotic normality, i.e.,

p
n [T (Fn)� T (F )]!d N

�
0; �2

�
Next we consider a simple case (see, e.g., [23]).

Proposition 54 Assume that for some metric � we have

� (Fn; F ) = Op

�
1p
n

�
If T is Frechet di�erentiable at F , with normalized gradient rT (F ) = uF , then

p
n [T (Fn)� T (F )]!d N

�
0; �2

�
Proof By (34),

T (Fn)� T (F ) =
Z
uF dFn + � (Fn; F ) o (1)

p
n [T (Fn)� T (F )] =

p
n

nX
i=1

uF (xi) +

p
nOp(1)o (1)p

n
=
p
n

nX
i=1

uF (xi) + o (1)

as desired. �

7 Appendix

We begin with a well-known result, proved for the sake of completeness. Here D+f (t) indicates the

right upper Dini derivative.

Proposition 55 Let f : [a; b]! R be continuous. Assume that t! D+f (t) exists and is continuous

on (a; b). Then,

(i) there is � 2 (a; b) such that f (b)� f (a) = D+f (�) (b� a);

(ii) f is continuously di�erentiable on (a; b), i.e.,

D+f (t) = D�f (t) = D+f (t) = D�f (t) 8t 2 (a; b)

Proof We prove only (ii) since (i) then follows from the standard Mean Value Theorem. De�ne the

scalar function

F (t) = f (t0) +

Z t

t0

D+f (�) d� 8t 2 (a; b)

where t0 is a �xed element in (a; b). By the continuity of D
+f (t), the function F is well de�ned,

continuous and di�erentiable on (a; b), with DF (t) = D+f (t). By construction, on (a; b) we have

D+ [f � F ] = D+f �DF = 0

A standard result then implies that f � F is constant on [a; b]. As F (t0) = f (t0), we get f = F .

Point (ii) is proved. �

An implication of the previous result is the following version of Mean Value Theorem without the

assumption of a-di�erentiability.
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Proposition 56 Let f : C ! R. Assume that:

(i) the limit

Df (x; y) = lim
t#0

f ((1� t)x+ ty)� f (x)
t

exists and is �nite for all x; y 2 C;

(ii) f is hemicontinuous on C;12

(iii) the function t 7! Df (xt; y) is continuous on (0; 1).

Then, for every x; y 2 C there is t 2 (0; 1) such that

f (y)� f (x) = 1

1� tDf (xt; y) = �
1

t
Df (xt;x) (36)

Proof Set ' (t) = f (xt). By (ii), ' is continuous on [0; 1]. As previously remarked, inspection of the

the proof of Lemma 17 shows that the right derivative of ' exists and

'0+ (t) =
1

1� tDf (xt; y) 8t 2 [0; 1)

By (iii), '0+ is continuous. We can then apply Proposition 55. Hence,

f (y)� f (x) = ' (1)� ' (0) = '0+ (�) =
1

1� � Df (x� ; y) :

In light of (ii) of Proposition 55, it holds '0� (t) = '0+ (t) for every t 2 (0; 1). Hence,

1

1� tDf (xt; y) = �
1

t
Df (xt;x)

as desired. �

Proposition 57 Let f : C ! R. Under conditions (i)-(iii) of Proposition 56 and the additional
condition

lim
t#0

Df (xt; z) = Df (x; z) 8x; y; z 2 C (37)

then

Df (x;�y + (1� �)z) = �Df (x; y) + (1� �)Df (x; z) (38)

for all x; y; z 2 C and all � 2 [0; 1].

Proof Set �� = 1� �. Write

f (x+ t [�y + ��z � x])� f (x) = f (x+ t� [y � x] + t�� [z � x])� f (x) = A+B

where

A = f (x+ t� [y � x] + t�� [z � x])� f (x+ t�� [z � x]) ; B = f (x+ t�� [z � x])� f (x)

Clearly,

Df (x;�y + ��z) = lim
t#0

A

t
+ lim

t#0

B

t
= lim

t#0

A

t
+ lim

t#0

f (x+ t�� [z � x])� f (x)
t

= lim
t#0

A

t
+ ��Df (x; z)

12Hemicontinuity is the continuity analog of hemidi�entiability.
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provided the limit exists. On the other hand, if we apply (36) to the increment A, we obtain that

A =
1

1� � Df (x+ �t� [y � x] + t�� [z � x] ;x+ t� [y � x] + t�� [z � x])

holds for some � 2 (0; 1). Tedious algebra shows that

x+ t� [y � x] + t�� [z � x] = (1� �) [x+ t� [y � x] + t�� [z � x]] + �y

where

� =
t� (1� �)
1� �t� 2 (0; 1)

By (3),

A =
1

1� � �
t� (1� �)
1� �t� Df (x+ �t� [y � x] + t�� [z � x] ; y)

Therefore,
A

t
=

�

1� �t�Df (x+ t [�� [y � x] + �� [z � x]] ; y) :

Thanks to (37), limt#0A=t = �Df (x; y) and this completes the proof. �
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