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Abstract

Dynamic consistency is a key behavioral property in dynamic models, en-
abling tractability by means of dynamic programming methods. However, it is
a behavioral property that is often violated in experiments. This paper shows
that dynamic consistency can be relaxed to hold over a much smaller domain of
consumption programs. Nonetheless, this domain can still be sufficiently rich
for practical applications. To illustrate, I provide examples of domains that
are rich enough to separate risk aversion from intertemporal substitution. As
an application, I introduce a new model of dynamic preferences, the Epstein-
Zin-Selden-Stux preferences. These preferences are recursive only within a re-
stricted domain. In contrast with standard recursive preferences, this weaker
notion of dynamic consistency allows for indifference to the timing of resolution
of uncertainty.
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1 Introduction

Dynamic consistency is a key property for dynamic economic models. It implies that
utilities satisfy a set of recursive conditions, which permits solving models by means
of standard dynamic programming techniques. Moreover, this recursive formulation
permits disentangling risk aversion from intertemporal substitution (e.g., see Chew
and Epstein 1991). Because of these facts, dynamic preferences which satisfy dynamic
consistency are of central importance in many economic settings, from models of
consumption-based asset pricing (Epstein and Zin 1989, Epstein and Zin 1991) to
optimal fiscal policy (Karantounias 2018).

At the same time, dynamic consistency is often violated in experiments. Indeed,
behavioral properties related to dynamic consistency such as stationarity are often
violated in experiments (Green et al. 1994; Kirby and Herrnstein 1995). Furthermore,
there is direct evidence of empirical violations of dynamic consistency, such as the
findings of Cubitt et al. (1998). Even when accounting for choice errors, both Buse-
meyer et al. (2000) and Johnson and Busemeyer (2001) provided support for these
findings by identifying statistically significant violations of dynamic consistency. In
contrast, other axioms of dynamic preferences, like consequentialism, have more fa-
vorable experimental support, as noted by Busemeyer et al. (2000). Halevy (2015)
finds that around half of subjects in his experiments are dynamically inconsistent.

In this paper, I show that the axiom of dynamic consistency can be weakened so
that it does not apply to all consumption programs. I consider preferences defined
over the set of all conceivable consumption programs. However, these preferences
satisfy the axiom of dynamic consistency only over a strict subset of consumption
programs, whose only requirement is to be topologically connected. To illustrate the
practical implications of this approach, I provide examples of consumption domains
that are not only topologically connected but also relevant in applications.

The leading example of consumption domain I consider is the set of those pro-
gram whose uncertainty about consumption resolves gradually (see Section 3). For
example, this assumption excludes consumption programs whose uncertainty resolves
after one period. To illustrate, in consumption-savings applications, consumption
at every period is a function of income whose uncertainty resolves gradually. In
consumption-based asset pricing models, consumption equals the the dividend pro-
cess, whose uncertainty resolves gradually.
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I show that despite this restricted notion of the dynamic consistency axiom, a
recursive representation can still be obtained that applies over the restricted con-
sumption domain (Theorem 1). In addition to being of relevance in applications, I
show that consumption domains of this kind, nevertheless, are rich enough to allow
for disentangling risk aversion from intertemporal substitution (Proposition 2). As
a consequence, one can separate risk aversion from intertemporal substitution under
weaker assumptions, while at the time considering a consumption domain that is
relevant in applications.

To illustrate the implications of these results, I introduce a model that “merges”
the Epstein-Zin preferences (Epstein and Zin 1989) with the dynamic ordinal cer-
tainty equivalent (DOCE) model of Selden and Stux (1978) (see also Selden 1978),
an alternative approach to Epstein-Zin preferences to separate risk aversion from
intertemporal substitution. Unlike Epstein-Zin preferences, DOCE preferences are
characterized by being indifferent to the timing of resolution of uncertainty (see the
discussion in Kubler et al. 2019a). I refer to this novel “hybrid” preferences as Epstein-
Zin-Selden-Stux (EZSS).

EZSS preferences are represented by a utility function which is given by the stan-
dard Epstein-Zin formulation for consumption programs on the restricted domain of
consumption, while for consumption programs not in this domain it takes the DOCE
formulation. Notably, these preferences are therefore indifferent to the timing of reso-
lution of uncertainty. In fact, this indifference is used to characterize EZSS preferences
(see Theorem 2).

This new model of preferences can be used to explain recent puzzles concerning
recursive preferences that have emerged in the literature. These puzzles are related to
preferences for the timing of resolution of uncertainty. A recent literature has ques-
tioned the implications of the Epstein-Zin model. For example, Epstein et al. (2014)
argue that standard parameter assumptions in finance and macroeconomic applica-
tions of the Epstein-Zin model can imply that consumers would pay implausibly large
premia for early resolution of consumption risk. However, in an experiment, Meissner
and Pfeiffer (2022) find that a sizable share of subjects are indifferent to the timing
of resolution of uncertainty. EZSS preferences satisfy the assumptions of recursive
utility over domains relevant in applications, but at the same time are indifferent
to early resolution of uncertainty. Therefore, these preferences can reconcile these
inconsistencies.
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I consider a formal setting of uncertainty (unlike a setting of risk such as in Kreps
and Porteus (1978) or Epstein and Zin (1989)). This setting permits considering
recursive models of ambiguity aversion, which are well known to be relevant in appli-
cations (e.g see Ju and Miao (2012) or Collard et al. (2018)).

Related literature. The theoretical paper closest to the present one is Kubler et al.
(2019a). They consider a consumption-portfolio optimization problem, and derive
necessary and sufficient conditions DOCE preferences of Selden (1978) satisfy the
properties of time consistency, the separation of time and risk preferences and the
ability to accommodate an indifference to the timing of when risk is resolved. Johnsen
and Donaldson (1985) provide an axiomatic representation of recursive preferences
in a setting with two periods. Hammond (1989) shows that the work Johnsen and
Donaldson contains a hidden assumption which restricts the domain of consumption.
Epstein and Le Breton (1993) demonstrate that dynamic consistency implies expected
utility. In the present paper, the filtration which describes the evolution of information
is taken to be fixed, therefore their results do not apply. Notice that a fixed filtration
is a standard assumption in applications. Sarin and Wakker (1998) and Epstein and
Schneider (2003b) characterize recursive multiple prior preferences. Siniscalchi (2011)
focuses on dynamically inconsistent preferences. Bommier et al. (2017) and Marinacci
et al. (2023) show that the assumption of monotonicity has strong restrictions on
recursive preferences.

2 Preliminaries

2.1 Framework

Time is discrete and varies over a finite horizon t ∈ {0, 1, . . . , T} ≡ T . The infor-
mation structure is described by a filtered space (Ω, {Gt}t∈T ) where Ω is an arbitrary
set of states of the world and G = {Gt}t∈T is a sequence of σ-algebras such that
G0 = {Ω, ∅} that satisfy Gt ⊂ Gt+1 for t = 0, . . . , T − 1.1 For simplicity, assume that
every algebra Gt, t ∈ T, is generated by a finite partition, where Gt(ω) denotes the
element of the partition containing ω ∈ Ω.

Let X denote the set of outcomes, which is assumed to be a convex subset of
1See Stokey and Lucas (1989) for canonical interpretations of this setting in terms of

shocks/observations.
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Rn. The main cases we are interested in are X = R+ and X = [1, ∞). An act or
consumption program is an X-valued, G-adapted process, that is, a sequence (ft)t∈T

such that ft : Ω → X is Gt measurable for every t ∈ T . F is the set of all consumption
programs. D is the set of deterministic consumption programs, d = (d0, d1, . . . , dn) ∈
D if and only if dt is measurable w.r.t. G0 for all t. Since each Gt is finitely generated,
then set of all Gt-measurable acts can be endowed with the product topology. It follows
that we can endow F with the product topology.2 The assumptions of finiteness are
not necessary but avoid the need to formally establish the existence of each recursive
utility model considered in this paper.3

Given a measurable space (S, Σ) and K ⊆ R, let B0(Σ, K) denote the set of simple
Σ measurable function with range contained in K. A function I : B0(Σ, K) → R (i)
continuous if it continuous in the sup-norm topology (ii) monotone if ξ(s) ≥ ξ′(s)
for every s ∈ S implies I(ξ) ≥ I(ξ′) (iii) strictly monotone if it is monotone and
ξ(s) ≥ ξ′(s) for every s ∈ S with one strict inequality implies I(ξ) > I(ξ′) (iv)
normalized if I(x) = x for every x ∈ R (where x denotes the constant function x1Ω).
Call I a certainty equivalent if it is continuous, strictly monotone and normalized.
Given a probability measure P defined on (S, Σ), an expected utility functional is
given by EP ξ =

∫
ξ(s)dP (s).

The primitives of interest are a family of G-adapted weak orders (complete and
transitive relations) {⪰t,ω}(t,ω)∈T ×Ω on F .4 Let ⪰0 denote the preference at time zero.
For brevity, I typically denote the collection of preferences {⪰t,ω}(t,ω)∈T ×Ω with ⪰t,ω

only. Say that a collection of real-valued functions (Vt(ω, ·))t,ω defined on R such that
D ⊆ R ⊆ F represents ⪰t,ω over R if for every h, h′ ∈ R

Vt(ω, h) ≥ Vt(ω, h′) ⇐⇒ h ⪰t,ω h′ for every (t, ω).

2.2 Recursive preferences

I consider a general notion of recursive representation of preferences.
2Denoting with |Gt| the number of elements of the partition that generates Gt, the set

{f : Ω → X : f is measurable w.r.t. Gt},

can be identified with a subset of R|Gt|, and therefore F can be endowed with the product topology.
3See Marinacci and Montrucchio (2010) for a thorough treatment of the topic.
4By G-adapted I mean that ⪰t,ω=⪰t,ω∗ whenever Gt(ω) = Gt (ω∗).
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Definition 1. Let R satisfy D ⊆ R ⊆ F . Preferences ⪰t,ω admit a recursive rep-
resentation over R if and only if there exist (Vt(ω, ·))t,ω that represent ⪰t,ω over R
satisfying the recursive relation VT (ω, h) = u(hT (ω)) for some continuous u : X → R
that satisfies u(z) = 0 for some z ∈ X and for t < T ,

Vt(ω, h) = W (ht(ω), It,ω (Vt+1(·, h))) for every h ∈ R, (1)

where Vt(ω, R) = Vt(ω′, R) ≡ Vt, each

It,ω : {ξ ∈ B0(Gt+1, Vt+1) : ξ = Vt+1(·, f), f ∈ R} → R,

is a certainty equivalent satisfying It,ω = It,ω∗ when Gt(ω) = Gt (ω∗) and W : X ×
∪τ≥t+1Vτ → R is a time aggregator that is continuous and strictly increasing in the
second variable that satisfies W (x, u(z)) = u(x).

A general recursive representation of ⪰t,ω can be identified by its parameters
(W, u, (It,ω)t,ω). Below I describe the most common types of specifications.

• Recursive discounted expected utility (RDEU) preferences, where W (x, y) =
u(x) + βy, β ∈ (0, 1) and It,ω(ξ) = EPt,ωξ with each Pt,ω being a probability on
(Ω, Gt+1).

• Recursive second-order expected utility preferences, where W (x, y) = u(x)+βy,
β ∈ (0, 1) and I(ξ) = ϕ−1

(
EPt,ωϕ(ξ)

)
for some strictly increasing and concave

function ϕ : u(X) → R and each Pt,ω is a probability on Ω. Such a class
of recursive preferences offers a simple separation between risk aversion and
intertemporal substitution. The most important instance of such preferences
are Epstein-Zin preferences (EZ) Epstein and Zin (1989), which are given by5

u(x) =


xρ

ρ
0 ̸= ρ < 1,

log(x) ρ = 0,

and

ϕ(x) =


ρ
α
x

α
ρ 0 ̸= α < 1, 0 ̸= ρ < 1,

1
α

exp αx 0 ̸= α < 1, ρ = 0.

5Epstein and Zin (1989) consider a more general class of certainty equivalents, but for simplicity
I focus on the case of expected utility.
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• Recursive maxmin expected utility (RMEU) preferences, see Epstein and Wang
(1994), Epstein and Schneider (2003b) where I(ξ) = minp∈Ct,ω Epξ, with each
set Ct,ω being convex and weak ∗ -closed set of probabilities with full support
on (Ω, Gt+1).

3 Relevant domains of consumption

In the standard dynamic consumption problem under uncertainty, uncertainty about
consumption resolves gradually. Therefore, programs that feature one-shot resolu-
tion of uncertainty are not needed to solve this kind of problem. To illustrate, in
the consumption-savings applications, consumption ct at every period t is a non-
trivial function of income yt, and uncertainty about income resolves gradually. In
consumption-based asset pricing models, in equilibrium one has ct = dt where (dt)t is
the dividend process, whose uncertainty resolves gradually.

For this reason, I suggest one should not take F as a domain of choice, but rather
a strict subset of it, a relevant domain in applications. A consumption program f ∈ F
involves early resolution if for some t ≥ 1, ft is measurable w.r.t. Gτ for some τ < t.
In words, this means that time t consumption is known at the earlier period τ .

Definition 2 (Domain of gradual resolution). For every t ∈ T , let Ft denote the set
given by

Ft = {f ∈ F : ft is Gτ -measurable for some τ < t =⇒ f ∈ D}.

Define the relevant domain to be GR = ∩T
t=1Ft.

In words, this means that a consumption program in GR either involves no early
resolution or it is deterministic. To illustrate, Figure 1 provides an example of con-
sumption programs (assuming x ̸= y) that resolve early (bottom) and gradually (top).
Therefore, only the top consumption program belongs to GR.

Another important example of consumption domain relevant in applications is
that of consumption programs that are independently distributed over time.

Definition 3. The set of independent consumption programs is given by

IND = {h ∈ F : there exist (ft)t with ft ∈ XS such that ht(s1, . . . , st−1, ·) = ft(·),

and if for some t′, ft′ is constant =⇒ h ∈ D}.
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Figure 1: Gradual resolution vs early resolution.

In words, this set contains consumption programs that are “independent” (ht

does not depend on (s1, . . . , st−1) but not necessarily “identically distributed” (ht

depends on a function ft : S → X which is not identical over time). Observe that
GR and IND are also mathematically rich enough to axiomatize a general recursive
representation and disentangle a general notion of risk aversion from intertemporal
substitution. These results, which I discuss in the next section, rely on the following
proposition.

Proposition 1. The consumption domains GR and IND are separable and connected
metric spaces.

4 Recursive utility over the relevant domain

Let R satisfy D ⊆ R ⊆ F . I show that if R is topologically connected then one
can obtain an aximatic representation of recursive preferences. The first axiom is a
standard continuity requirement.

Axiom 1 (Continuity). For every h ∈ R the sets

{f ∈ F : f ⪰t,ω h} ,
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and
{f ∈ F : h ⪰t,ω f} ,

are closed.6

Given τ ∈ T , x, y, z ∈ X, and d ∈ D, (d−t−1, y, xT −t′ , zt−t′) denotes the determin-
istic consumption stream that pays dτ at times τ = 0, . . . , t−1, y at time t, x at times
τ = t + 1, . . . , T + t − t′ and z at times τ = T + t − t′ + 1, . . . , T . The next axiom,
stationarity, requires preference over deterministic programs to be independent of a
time delay.

Axiom 2 (Stationarity). There exist z ∈ X such that for every t ≤ t′, ω, ω′ ∈ Ω,
d ∈ D, y, ȳ, x, x̄ ∈ X

(d−t−1, y, xT −t′ , zt−t′) ⪰t,ω (d−t−1, ȳ, x̄T −t′ , zt−t′) ⇐⇒

(d−t′−1, y, xT −t′) ⪰t′,ω′ (d−t′−1, ȳ, x̄T −t′).

The next axiom, which I refer to as consequentialism, requires that the decision
maker at a note (t, ω) does not care about (i) what an act pays on unrealized events
nor (ii) what it pays at earlier time periods.

Axiom 3 (Consequentialism). For all t ∈ T and ω ∈ Ω, and all acts f, g ∈ F , if
fk (ω′) = gk (ω′) for all k ≥ t and all ω′ ∈ Gt(ω), then f ∼t,ω g.

Observe that the above axiom implies that the ranking of a program f ∈ R by
⪰t,ω depends only on (ft(ω), ft+1, . . . , fT ).

Finally, the last axiom excludes preference reversals as new information arrives.

Axiom 4 (Restricted Dynamic Consistency). For all t ∈ T, and ω ∈ Ω, and programs
f, g ∈ R that yield identical outcomes up to and including period t, if f ⪰t+1,ω′ g for
all ω′ ∈ Gt(ω), then f ⪰t,ω g and if f ≻t+1,ω′ g for some ω′ ∈ Gt(ω), then f ≻t,ω g.7

6Recall that F is endowed by the product topology, and that therefore R can be endowed with
the relative topology

7It is possible to consider a weaker axiom notion of dynamic incosistency, which would result
in a certainty equivalent that It,ω need not be strictly monotone. This could be done by defining
appropriately the notion of a ⪰t,ω-nonnull event. Then one can require that if f ≻t+1,ω′ g for every
ω′ in a ⪰t,ω -nonnull event, then f ≻t,ω g. I chose to present the stronger representation as DC is
easier to state.
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Observe that this version of dynamic consistency is restricted to hold only for
the relevant domain of consumption R, and need not hold on the entire domain F .
The next representation theorem characterizes recursive utility under very general
conditions (cf. Kreps and Porteus (1978), Johnsen and Donaldson (1985), Chew and
Epstein (1991), Skiadas (1998), Wang (2003), Hayashi (2005), Bommier et al. (2017)),
allowing for both changing beliefs and ambiguity sensitive preferences. The only loss
of generality is constituted by the exclusion of an infinite horizon, which however can
be overcome by means of appropriate technical conditions.

Theorem 1 (Recursive representation). Assume that R is connected and satisfies
D ⊆ R ⊆ F . Preferences ⪰t,ω satisfy axioms 1-4 if and only if they admit a general
recursive representation over R.

Proof. See the appendix.

At a technical level, the main difficulty introduced by weakening the completeness
axiom is related to showing that R ⊆ F is rich enough to construct a representation.
In the appendix (see Lemma and 1 and Remark 4) I show that GR and IND are con-
nected. Hence, Theorem 1 shows that not only is gradual resolution of uncertainty
the relevant case in applications, but that also it is enough to provide a recursive
representation of preferences. These domains of consumption are silent about pref-
erences for early or late resolution of uncertainty, the main motivation of Kreps and
Porteus (1978).

I close with a few remarks.

Remark 1. One could wonder whether given a recursive representation (W, u, (It,ω)t,ω)
on R the only “reasonable” extension to F is given by the straightforward extension
of (W, u, (It,ω)t,ω) to F . In Section 4.2, I show that one can extend preferences in a
different fashion. Specifically, I introduce preferences that have an Epstein-Zin rep-
resentation on R but on F \ R admit the representation introduced by Selden and
Stux (1978) and Selden (1978). Notably, such a “hybrid” model features indifference
to timing of resolution of uncertainty.

Remark 2. The theorem makes no reference to uniqueness of the representation.
Uniqueness can be achieved by adding further conditions that imply uniqueness of
u : X → R. For example, one can assume that X is the set of lotteries over a finite
set Z and obtain uniqueness of u by means of specific axioms such as independence.
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4.1 Separating intertemporal substitution from attitudes to-
ward uncertainty

A simple yet important implication of Theorem 1 is that to separate risk aversion
from the intertemporal rate substitution it is enough to observe only choices over a
subset D ⊆ R ⊆ F .

Comparative risk aversion can be defined in a similar fashion as in Epstein and Zin
(1989) (pp. 949-950) and Chew and Epstein (1991) (Theorem 3.2). For any f ∈ R,
(t, ω) and d ∈ D, denote with (ft(ω), dT −t) the consumption stream that pays ft(ω)
at time t and dτ at times τ = t + 1, . . . , T .

Definition 4. ⪰1
t,ω is more risk averse than ⪰2

t,ω if for every f ∈ R, d ∈ D and (t, ω)
with t < T

(ft(ω), dT −t) ⪰2
t,ω (ft(ω), ft+1, . . . , fT ) =⇒ (ft(ω), dT −t) ⪰1

t,ω (ft(ω), ft+1, . . . , fT ),

and

(ft(ω), dT −t) ≻2
t,ω (ft(ω), ft+1, . . . , fT ) =⇒ (ft(ω), dT −t) ≻1

t,ω (ft(ω), ft+1, . . . , fT ).

We obtain the following comparative statics result.

Proposition 2. Consider preferences ⪰i
t,ω, i = 1, 2 that admit the representation in

(1). ⪰1
t,ω is more risk averse than ⪰2

t,ω if and only if they admit recursive representa-
tions (W i, ui, (I i

t,ω)t,ω), i = 1, 2 such that u1 = u2, W 1 = W 2 and I1
t,ω(ξ) ≤ I2

t,ω(ξ) for
every ξ ∈ {ξ ∈ B0(Gt+1, Vt+1) : ξ = Vt+1(·, f), f ∈ R} and every (t, ω).

Remark 3. Observe that if R = D then the “only if” part of the statement is
trivially true since I i

t,ω are defined on deterministic prospects so that I1
t,ω = I2

t,ω.
More in general, this will be true whenever

{ξ ∈ B0(Gt+1, Vt+1) : ξ = Vt+1(·, f), f ∈ R} = {ξ ∈ B0(Gt+1, Vt+1) : ξ = Vt+1(d), d ∈ D}.

(2)

Now consider the special case of EZ preferences. Assume that ⪰i
t,ω are represented

by
V i

t (ω, h) = ht(ω)ρi

ρi

+ βi(EPt,ω(V i
t+1(·, h)

αi
ρi )

ρi
αi , (3)

for 0 ̸= ρ < 1 and that (2) does not hold. In this case we obtain the following.
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Corollary 1. (⪰t,ω)1
t,ω is more risk averse than (⪰t,ω)2

t,ω if and only if β1 = β2,
ρ1 = ρ2 and α1 ≤ α2.

Proof. The result follows immediately by the previous proposition upon observing
that I(ξ) = (EP ξα)

1
α is increasing in α (see Theorem 16, Hardy et al. (1952)).

This result establishes that domains of consumption such as R = GR or R =
IND are rich enough to disentangle risk aversion from intertemporal substitution,
since (2) does not hold in these cases.

4.2 The Epstein-Zin-Selden-Stux model

Within the consumption domains GR and IND, uncertainty only resolves gradu-
ally. Therefore, within these domains one cannot infer preferences for early or late
resolution of uncertainty (Kreps and Porteus 1978). Here I present an example of
preferences F that are recursive over R ⊆ F , but at the same time are indifferent
to the timing of resolution. In this way, this new model of preferences is able to
addresses puzzles in the literature, particularly concerning how consumers value the
timing of uncertainty resolution. Epstein et al. (2014) argue that standard parameter
assumptions the Epstein-Zin model implies consumers would pay implausibly large
timing premia for early resolution of consumption risk, while Meissner and Pfeiffer
(2022) find that a consistent subjects in their experiment are indifferent to the timing
of resolution of uncertainty.

The new model I introduce merges EZ preferences with DOCE preferences. Ax-
iomatized in Selden (1978) and Selden and Stux (1978), DOCE preferences replace
risky consumption in each period by certainty equivalents with respect to a util-
ity function v(·) and evaluate the resulting sequence of certainty equivalents with
discounted utility with respect to a utility function u(·). These preferences an alter-
native to EZ preferences to disentangle risk aversion from intertemporal substitution.
In contrast with recursive preferences, DOCE preferences are neutral to the timing
of resolution of uncertainty (see Selden and Stux (1978) and Kubler et al. (2019b)).
Hall (1985), Zin et al. (1987), Attanasio and Weber (1989) and Kubler et al. (2019b)
have studied applications of different variations of such preferences.

In order to consider the behavioral property of indifference to the timing of resolu-
tion of uncertainty, I consider a setting of IID (Independently and Indistinguishably
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Distributed) ambiguity (see Epstein and Schneider (2003a) and Strzalecki (2013)).
Specifically, such an assumption requires that that Ω = ST with T ≥ 2, where (S, Σ)
is a finite measurable space. Moreover, Σ = 2S and let Gt = Σt ×{∅, S}T −t. In words,
this means that at time t one knows the realization of (ω, t) = (s1, . . . , st) := st,
but is ignorant about the future. More precisely, observe that in this case we have
Gt((s1, . . . , sT )) = {s1} × . . . × {st} × {∅, S}T −t. Finally, assume that X = [0, ∞)

In this setting, the Epstein-Zin-Selden-Stux preferences (EZSS) are defined as
follows.

Definition 5. Preferences ⪰t,ω admit an EZSS representation if they are represented
over F by (Vt(st, ·))st which for some 0 ̸= α < 1, 0 ̸= ρ < 1 satisfies for every
h ∈ F \ R

Vt(st, h) = ht(s1, . . . , st)ρ

ρ
+

T −t∑
j=1

βj 1
ρ

[
E∏j

τ=1 P (st+j)h
α
t+j(st, ·)

] ρ
α

, (4)

and for every h ∈ R

Vt(st, h) = ht(st)ρ

ρ
+ β(EP (Vt+1(·, h)

α
ρ )

ρ
α . (5)

Preferences that admit an EZSS representation satisfy dynamic consistency only
on the relevant domain R. At the same time, as I am going to show, they satisfy
indifference to the timing of resolution of uncertainty.

Consider preferences ⪰EZ
t,ω that have an EZ representation (see Section 2.2) on

F with parameters (α, ρ), 0 ̸= α < 1, 0 ̸= ρ < 1. This setting permits defining
ranking consumption programs in terms of temporal resolution of uncertainty to define
indifference to timing (see Strzalecki (2013)).

Definition 6. Fix t ≤ T − 2. Say that h ∈ F resolves earlier than h′ ∈ F whenever
there exist ft+2, . . . , fT ∈ XS and x0, . . . , xt+1 ∈ X such that hj = h′

j = xj for all
j ≤ t + 1, hj(s1, . . . , sj) = fj(st+1) for j ≥ t + 2, and h′

j(s1, . . . , sj) = fj(st+2).

The first axiom requires indifference toward the timing of resolution of uncertainty.

Axiom 5 (Indifference to timing). Consider h, h′ ∈ F \ R such that for some s̄t =
(s̄1, . . . , s̄t) with 1 ≤ t ≤ T − 2 the consumption program

(h0, h1(s̄1), h2(s̄1, s̄2), . . . , ht(s̄t), . . . , hT (s̄t, ·)),
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resolves earlier than

(h′
0, h′

1(s̄1), h′
2(s̄1, s̄2), . . . , h′

t(s̄t), . . . , h′
T (s̄t, ·)),

and hτ (s1, . . . , sτ ) = h′
τ (s1, . . . sτ ) for every (s1, . . . , sτ ) with τ < t and hτ (s1, . . . , sτ ) =

h′
τ (s1, . . . sτ ) for every (s1, . . . sτ ) such that τ ≥ t and (s1, . . . , st) ̸= (s̄1, . . . , s̄t). Then

it holds that h ∼t′,ω h′ for every t′ ≤ t.

In words, if h resolves earlier than h′, but otherwise these programs are equiva-
lent, one should be indifferent. The next axiom requires preferences to admit an EZ
representation over R, therefore implying axioms 1, 2 and 4.

Axiom 6 (Epstein-Zin over the relevant domain). For every h, h′ ∈ R

h ⪰t,ω h′ ⇐⇒ h ⪰EZ
t,ω h′.

The next two axioms require that, for each period, risky consumption profiles are
assessed through certainty equivalents, consistent with the Epstein-Zin preferences
⪰EZ

t,ω .

Axiom 7 (Consistency with Epstein-Zin). Let h, h′ ∈ R be such that there exist, t,
f, f ′ : S → X and (s1, . . . , st−1) such that ht(s1, . . . , st−1, ·) = f(·), h′

t(s1, . . . , st−1, ·) =
f ′(·), hτ = h′

τ = 0 for all τ ̸= t and ht(s̄t) = h′
τ (s̄t) = 0 whenever (s̄1, . . . , s̄t−1) ̸=

(s1, . . . , st−1). Then
h ⪰t,ω h′ ⇐⇒ h ⪰EZ

t,ω h′.

Axiom 8 (Risk Independence). Given any pair h, h′ ∈ F \ R which are identical
except at the node (s1, . . . , st−1), then letting h̄t(s1 . . . , st−1, ·) = ht(s1 . . . , st−1, ·),
h̄′

t(s1 . . . , st−1, ·) = h′
t(s1 . . . , st−1, ·) and h̄t = h̄′

t = 0 otherwise,

h̄ ∼t,ω h̄′ =⇒ h ∼t,ω h′.

These axioms, along with the axiom of consequentialism (axiom 3), characterize
EZSS preferences.

Theorem 2. Assume that R is connected and satisfies D ⊆ R ⊆ F . Preferences
⪰t,ω satisfy axioms 3, 5-8 if and only if they admit an EZSS representation.

This result shows that Epstein-Zin recursive utility can be compatible with indif-
ference to the timing of resolution of uncertainty.
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5 Concluding remarks

Models of recursive preferences play a central role in many applications in economics.
However, they require strong assumption on behavior. One objection against the
axiom of dynamic consistency is that it is unrealistic to assume it can hold even
when the decision maker is confronted with unrealistic choice situations. I provided
an axiomatization of recursive preferences based on much weaker assumptions than
what is usually assumed. At the same time, these assumptions are still strong enough
for recursive models to be applied. Moreover, this approach can be used to address
existing empirical puzzles in the applied literature.

6 Appendix

6.1 Proof of Proposition 1

Proof. First observe that F is separable and therefore GR is separable since any
subset of a separable metric space is separable. I now show that GR is path-connected.
Take h ∈ GR and d ∈ D. Clearly if h ∈ D then the result follows by convexity of D
(recall that X is convex). Assume h ∈ GR\D. Let {P t

1, . . . , P t
nt} denote the partition

of Ω that generates Gt. I construct a continuous path ι : [0, 1] → GR that connects
h to d. Since X is convex, for every t we just let ιt(α) = (1 − α)ht + αdt. Fix t ≥ 1.
Without loss of generality, assume that nt − nt−1 = 1 and P t−1

nt−1 = P t
nt ∪ P t

nt−1. Let
ω ∈ P t

nt and ω′ ∈ P t
nt−1. If (1 − α)ht(ω) + αdt = (1 − α)ht(ω′) + αdt, we obtain a

contradiction since ht(ω) = ht(ω′) but h ∈ GR \ D. Therefore, ιt(α) ∈ GR for every
α. It follows that we can connect via a path any f ∈ GR to d ∈ D. Hence, we
can connect any h, h′ ∈ GR by a path. We conclude that GR is path-connected and
therefore connected.

Remark 4. The set

IND = {h ∈ F : there exist (ft)t with ft ∈ XS such that ht(s1, . . . , st−1, ·) = ft(·),

and if for some t′, ft′ is constant =⇒ h ∈ D},

is easily seen to be connected by analogous arguments. Observe that such a domain
is the natural extension to T periods of “certain × uncertain” consumption plans
(e.g., see Selden (1978), Johnsen and Donaldson (1985)). Indeed, the two coincide
when T = 1.
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6.2 Proof of Theorem 1

Proof of Theorem 1. I first prove sufficiency of the axioms. First by continuity, conse-
quentialism and since R is connected and separable (the consumption set is separable)
by assumption, one can apply well known results from Debreu (1954) to show that
there exist (sequentially) continuous functions (Vt(ω, ·))t,ω such that

Vt(ω, h) = Vt(ht(ω), ht, . . . , hT ) for every h ∈ R.

Observe that by stationarity there exists a (sequentially) continuous function u : X →
R such that VT (ω, h) = u(hT (ω)) and Vt(ω, (x, zT −t−1)) = u(x) for every ω ∈ Ω and
t < T . Moreover, we can normalize u(·) from the stationarity axiom so that u(z) = 0.

I construct It,ω : B0(Gt+1, Vt+1(ω, R)) → R as follows: for every h, by con-
tinuity, dynamic consistency, consequentialism, and stationarity we can construct
dω,t = (dt+1, . . . , dT ) ∈ XT −t such that for any d̄ ∈ D

h ∼t,ω (d̄−t−1, ht(ω), dω,t) ∈ D. (6)

Observe that all acts in (6) belong to R. In particular, dω,t can be constructed
recursively as follows. Starting from t = T − 1, observe that for any ω ∈ Ω, there
exist x, y ∈ X such that

VT −1(hT −1(ω), x) ≥ VT −1(hT −1(ω), hT ) ≥ VT −1(hT −1, y).

To see this, let x = hT (ω̄) and y = hT (
¯
ω), where ω̄ = arg maxω u(hT (ω)) and

¯
ω = arg minω u(hT (ω)). The statement follows by applying dynamic consistency.
Therefore, by continuity and connectedness X we can find dT −1,ω ∈ X such that
h ∼T −1,ω (d̄−t−1, hT (ω), dT −1,ω). Now for any t < T − 1 and ω, assume one has
constructed dt+1,ω′ for every ω′ ∈ Gt(ω). Let d̄t,ω = (ht+1(ω̄), dt+1,ω̄) and

¯
dt,ω =

(ht+1(¯
ω), dt+1,

¯
ω) where

ω̄ = arg max
ω′

V (ht+1(ω), dt+1,ω′),

and

¯
ω = arg min

ω′
V (ht+1(ω), dt+1,ω′),

Then by dynamic consistency and stationarity we have

Vt(ht(ω), d̄t,ω) ≥ Vt(ω, h) ≥ Vt(ht(ω),
¯
dt,ω).
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Again, by connectedness of X and continuity we can find dt,ω such that (6) is verified.
Now observe that this implies that for each (t, ω), t = 0, . . . , T and ω ∈ Ω we have

Vt(ω, R) = Vt(ω′, R) ≡ Vt (observe that Vt ⊆ Vt′ whenever t′ ≤ t). Define

It,ω : B0(Gt+1, Vt+1) → R,

by It,ω(ξ) = Vt+1(dω,t) and where ξ(ω) = Vt+1(ω, h). Observe that It,ω is well defined
by dynamic consistency.

I now claim that It,ω is strictly monotone, normalized and continuous. That It,ω is
normalized follows by definition. Strict monotonicity follows by dynamic consistency.
To prove continuity, assume that ξn → ξ. Let hn and h satisfy ξn = Vt+1(·, hn),
ξ = Vt+1(·, h) and lim hn = h. By contradiction, suppose that It,ω(ξn) ̸→ It,ω(ξn). It
follows that Vt+1(dn

t,ω) ̸→ Vt+1(dt,ω). Hence, there exists ε ≥ 0 such that for every
N ∈ N there exists n ≥ N such that

|Vt+1(dt,ω) − Vt+1(dn
t,ω)| ≥ ε > 0.

By dynamic consistency it follows that there exists ϵ > 0 such that for every N ∈ N
there exists n ≥ N such that

|Vt

(
ht(ω), Vt+1(dn

t,ω)
)

− Vt (ht(ω), Vt+1(dt,ω)) | ≥ ϵ > 0.

Observe that by continuity we have Vt(ω, hn) → Vt(ω, h). Hence, we have arrived at
a contradiction. Therefore It,ω(ξn) → It,ω(ξn) as desired.

Now assume that ht(ω) = h′
t(ω) and It,ω(Vt+1(·, h)) = It,ω(Vt+1(·, h′)). By dynamic

consistency, it follows that h ∼t,ω h′. Moreover, if It,ω(Vt+1(·, h)) > It,ω(Vt+1(·, h′))
then ht,ω ≻t,ω h′. By Lemma 1 in Gorman (1968) it follows that there exists a
continuous function Wt : X × Vt+1 → R strictly increasing in its second argument
such that

Vt(ω, h) = Wt (ht(ω), It,ω (Vt+1(·, h))) .

Finally observe that by stationarity it holds that Wt(x, y) = Wt′(x, y) for every t, t′,
x ∈ X and y ∈ Vmax{t,t′}+1. Therefore, we can set W ≡ W0, which delivers the
representation.

I now turn to the necessity of the axioms. It is immediate to check that the
recursive representation satisfies axiom 3. To show that the representation satisfies
continuity, take h ∈ R and a sequence (fn)n in R such that fn ⪰t,ω h and lim fn = f .
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This means that Vt(ω, fn) ≥ Vt(h) for every n so that by sequential continuity of
Vt(ω, ·) we obtain that the set

{f ∈ R : f ⪰t,ω h} ,

is closed. Showing that the set

{f ∈ R : h ⪰t,ω f} ,

is closed can be done in the same way. Turn now to axiom 2. Let z ∈ X be such that
u(z) = 0 and W (x, u(z)) = u(x) (we know z exists by assumption). Now for every
t ≤ t′, ω, ω′, d ∈ D, y, ȳ, x, x̄ ∈ X it holds that Vt′+1(xT −t′) = Vt+1((xT −t′ , zt−t′)). It
follows that

Vt(ω, (d−t−1, y, xT −t′ , zt−t′)) = W (y, Vt+1(xT −t′))

≥ Vt (ω, (d−t−1, ȳ, x̄T −t′ , zt−t′)) = W (ȳ, Vt+1(x̄T −t′))

⇐⇒ Vt′(ω, (d−t′−1, y, xT −t′)) = W (y, Vt′+1(xT −t′))

≥ Vt′ (ω, (d−t′−1, ȳ, x̄T −t′)) = W (ȳ, Vt′+1(x̄T −t′)),

which implies that axiom 2 is satisfied. Finally, take h, h′ ∈ R and (t, ω) with
ht(ω) = h′

t(ω). If h ⪰t+1,ω′ h′ for every ω′ ∈ Gt(ω) then Vt+1(ω′, h) ⪰t+1,ω′ Vt+1(ω′, h′)
which by monotonicity of It,ω implies It,ω(Vt+1(·, h)) ≥ It,ω(Vt+1(·, h′)). Since W is
strictly increasing in its second variable, it follows that Vt(ω, h) ⪰t,ω Vt(ω, h′) as
desired. Moreover, if for some ω′ ∈ Gt(ω) the inequality is strict, then by strict
monotonicity of It,ω we get It,ω(Vt+1(·, h)) > It,ω(Vt+1(·, h′)) as desired.

6.3 Proof of Proposition 2

Proof. First observe that if W1 = W2, then

(ft(ω), dT −t) ⪰i
t,ω (ft(ω), ft+1, . . . , fT ) ⇐⇒ Vt+1(d) ≥ I i

t,ω(V i
t+1(·, f)), (7)

Now if ⪰1
t,ω is more risk averse than ⪰2

t,ω then it is straightforward to check that
they rank prospects in D in the same way. It follows that they must admit recursive
representations (W i, ui, (I i

t,ω)t,ω), i = 1, 2 such that u1 = u2 and W 1 = W 2. By (7) it
follows that I1

t,ω(ξ) ≤ I2
t,ω(ξ) for every ξ ∈ {ξ ∈ B0(Gt+1, Vt+1) : ξ = Vt+1(·, f), f ∈ R}.

The converse follows immediately by (7).
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6.4 Proof of Theorem 2

Proof of Proposition 2. First observe that (5) is equivalent to axiom 6. The remainder
of the proof uses arguments from Selden and Stux (1978) (proof of Lemma 1). I
prove sufficiency of the axioms in the case of ⪰0, and using consequentialism the
result follows for ⪰t,ω analogously. I claim that for every h ∈ F \ R, there exists
c̄ = (h0, c1, . . . , cT ) ∈ D such that c̄ ∼0 h and

ct =
[
E∏t

τ=1 P (sτ )h
α
t

] 1
α

,

which establishes the representation since ⪰0 has an EZ representation so that

V0((h0, c1, . . . , cT ))) = u(h0) +
T∑

t=1
βju(cj),

where u(x) = xρ

ρ
, as desired. First, for every st−1 = (s1, . . . , st−1), let

c1
t (st−1) =

[
EP (st)h

α
t

] 1
α .

Observe that axioms 7 and 8, we have

h ∼0 (h0, . . . , hT −1, c1
T ).

Now by further applying axioms 7 and 8 we get

(h0, . . . , hT −1, c1
T ) ∼0 (h0, . . . , c1

T −1, c1
T ).

By axiom 5,
(h0, . . . , c1

T −1, c1
T ) ∼0 (h0, . . . , c1

T −1, ĉ1
T ),

where ĉ1
T (s1, sT −2 . . . , ·, sT ) is constant and

ĉ1
T (s1, . . . , ·) = c1(s1, . . . , ·).

By another application of axioms 7 and 8 we obtain:

(h0, . . . , c1
T −1, ĉ1

T ) ∼0 (h0, . . . , c1
T −1, c2

T ),

where
c2

T =
[
EP (sT −1)P (sT )h

α
T

] 1
α .
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Proceeding as in the previous to steps, we obtain at step t

h ∼0 (h0, . . . , c1
T −t+1, . . . , ct−1

T −1, ct
T ),

where
ct

j =
[
E∏j

τ=T −t+1 P (sτ )h
α
j

] 1
α

.

Specifically, after T steps we get

h ∼0 (h0, c1, . . . , cT ),

as desired.
I turn to the necessity of the axioms. It is immediately verified that all axioms

are satisfied, except axiom 5. I prove that the representation satisfies indifference to
timing. Take h, h′ such that for some s̄t = (s̄1, . . . , s̄t) with 1 ≤ t ≤ T − 2 the act

(h0, h1(s̄1), h2(s̄1, s̄2), . . . , ht(s̄t), . . . , hT (s̄t, ·)),

resolves earlier than

(h′
0, h′

1(s̄1), h′
2(s̄1, s̄2), . . . , h′

t(s̄t), . . . , h′
T (s̄t, ·)),

and hτ (s1, . . . , sτ ) = h′
τ (s1, . . . sτ ) for every (s1, . . . , sτ ) with τ < t and hτ (s1, . . . , sτ ) =

h′
τ (s1, . . . sτ ) for every (s1, . . . sτ ) such that τ ≥ t and (s1, . . . , st) ̸= (s̄1, . . . , s̄t). Then

we have for t′ ≤ t

Vt′((s1, . . . , st′), h) − Vt′((s1, . . . , st′), h′) ∝
T −t∑
j=0

βju

( [
E∏j

τ=1 P (st+τ )h
α
t+j

] 1
α

)
−

T −t∑
j=0

βju

( [
E∏j

τ=1 P (st+τ )h
′α
t+j

] 1
α

)
.

Observe that by assumption on h, h′ we have

E∏j

τ=1 P (st+τ )h
α
t+j = E∏j

τ=1 P (st+τ )h
′α
t+j,

for j = 0, . . . , T − t. Therefore Vt′((s1, . . . , st′), h) − Vt′((s1, . . . , st′), h′) = 0 whence
the result follows.
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