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Abstract
Dynamic consistency is a key behavioral property in dynamic economic models, mak-
ing it possible to use tractable dynamic programming techniques. However, when
combined with the separation of time and risk preferences, it can lead to unrealistic
predictions that contradict empirical evidence. This paper demonstrates that dynamic
consistency can be relaxed to hold over a much smaller domain of consumption pro-
grams while maintaining sufficient richness for practical applications and allowing the
separation of risk aversion from intertemporal substitution. As an application, I intro-
duce a newmodel of dynamic preferences, the Epstein–Zin–Selden–Stux preferences.
These preferences are recursive only within a restricted domain. Recent experimental
results by Meissner and Pfeiffer (J Econ Theory 200:105379, 2022), which Epstein–
Zin preferences cannot rationalize, find a natural explanation through this new model.
Finally, I consider an application of this new model to a consumption-investment
problem.

Keywords Recursive utility · Dynamic consistency · Intertemporal substitution ·
Risk aversion

JEL Classification C61 · D81

1 Introduction

Dynamic consistency is a key property of dynamic economic models. Along with
other standard axioms, it implies that intertemporal utilities satisfy a set of recursive
conditions,which permits solvingmodels bymeans of standard dynamic programming
techniques. Models of recursive utility allow for the disentangling (e.g., see Chew and
Epstein 1991) of risk aversion from the elasticity of intertemporal substitution (EIS), a
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common desideratum inmany economic applications.Moreover, dynamic consistency
is an appealing axiom from a normative perspective [e.g., see Ghirardato (2002) or
Al-Najjar and Weinstein (2009)]. Because of these facts, even if dynamic consistency
is often violated in experiments, it is an assumption of central importance in many
economic settings, from asset pricing (Epstein and Zin 1991; Suzuki and Yamagami
2024) to optimal fiscal policy (Karantounias 2018).

However, for recursive preferences, disentangling risk aversion from intertemporal
substitution is incompatible with indifference to the timing of resolution of uncertainty
(Kreps and Porteus 1978). This fact poses a problem from a normative point of view, as
it implies that non-instrumental information can be valuable. Moreover, a preference
for early or late resolution of uncertainty can create empirical issues.

For instance, Epstein et al. (2014) argue that standard parameter assumptions in
finance and macroeconomic applications of the Epstein–Zin model-the cornerstone of
recursive utility-lead to implausibly large premia for early resolution of consumption
risk. They introduce the concept of a timing premium, defined as the proportion of
wealth a decision-maker is willing to forgo to resolve all consumption uncertainty
immediately. Their findings show that common parameter values used in the literature
result in timing premia exceeding 30%, a figure difficult to justify at the level of
introspection.

This result contrasts with the finding of Meissner and Pfeiffer (2022) who in their
experiment find that on average subjects havemoderate preferences for early resolution
with average timing premium about 5%, and around 40% of subjects in the experiment
are indifferent to the timing of resolution of uncertainty.Moreover, they find that under
estimated Epstein–Zin preference parameters, the predicted timing premium is small
and negative. This discrepancy arises because their estimates of preference parameters
indicate that relative risk aversion is strictly smaller than the reciprocal of the EIS—a
condition under which the Epstein–Zin model predicts a positive timing premium.

In this paper, I demonstrate that the axiom of dynamic consistency can be relaxed
such that it does not apply to all consumption programs. This weakening still allows
preferences to disentangle risk aversion from intertemporal substitution. Simultane-
ously, it helps to reconcile experimental findings: under certain specifications, this
approach can imply a moderate positive or zero timing premium, even when relative
risk aversion is less than the reciprocal of the EIS.

Preview of results

I consider preferences defined over the set of all conceivable consumption programs.
These preferences satisfy the axiom of dynamic consistency over only a strict subset
of consumption programs, whose only requirement is to be topologically connected.
Notably, I provide examples of consumption domains that are not only topologically
connected but also relevant in applications.

First, I show that despite this restricted notion of the dynamic consistency axiom, a
recursive representation can still be obtained that applies over the restricted consump-
tion domain (Theorem1).Moreover, I show that consumption domains of this kind, are
nevertheless, rich enough to allow for disentangling risk aversion from intertemporal
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substitution (Proposition 2). As a consequence, one can separate risk aversion from
intertemporal substitution under this weaker notion of dynamic consistency, while at
the same time considering a consumption domain that is relevant in applications.

Relevantdomainsof consumption. I consider twomain examples of relevant domains
of consumption (see Sect. 3). The first is the domain GR of consumption programs
that resolve gradually. To illustrate, in consumption-savings applications, consumption
at every period is a function of income whose uncertainty resolves gradually. The
second is the domain I N D of programs that are independently distributed over time.
For instance, in consumption-based asset pricing models, one of the main variables
of interest is log consumption growth, which is often modelled as an i.i.d. process.
The main technical contribution is to show that both these domains are connected, as
required by Theorem 1 (see Proposition 1).

Epstein–Zin–Selden–Stux preferences. These general theoretical results are then
specialized to the Epstein–Zin case. Building on Theorem 1, Theorem 2 provides
an axiomatic foundation of a novel model that “merges” the Epstein–Zin preferences
(Epstein andZin 1989)with the dynamic ordinal certainty equivalent (DOCE)model of
Selden (1978), an alternative approach to Epstein–Zin preferences intended to separate
risk aversion from intertemporal substitution (see also Selden and Stux 1978 for the
axiomatization with finitely many arbitrary time periods).

Unlike Epstein–Zin preferences, DOCE preferences are characterized by indiffer-
ence to the timing of resolution of uncertainty [see the discussion in Kubler et al.
(2019)]. I refer to these novel “hybrid” preferences as Epstein–Zin–Selden–Stux
(EZSS). EZSS preferences are represented by a utility function which is provided
by the standard Epstein–Zin formulation for consumption programs on the restricted
domain of consumption, while for consumption programs not in this domain it takes
the DOCE formulation.

Application: timing premia. Meissner and Pfeiffer (2022) estimate the preference
parameters of the Epstein–Zin (EZ) model and find that

relative risk aversion < EIS−1 . (1)

A similar pattern is observed in the dynamic discrete choice model estimated by Lu
et al. (2024). Recall that Epstein–Zin preferences predict that when equation (1) holds
the timing premium should be negative—which contradicts the experimental evidence
of a positive but moderate timing premium. By contrast, under DOCE preferences,
the timing premium would always equal zero.

I show that EZSS preferences can reconcile this empirical evidence (see Sect. 5.1).
Specifically, when the relevant domain is I N D, the parameters estimated in their
experiment—which satisfy (1)—yield a timing premium of approximately 4%. This
reflects a moderate preference for early resolution of uncertainty, in line with the
elicited value of the premium.Observe that neitherDOCEnorEpstein–Zin preferences
can explain this evidence. On the other hand, if the relevant domain is GR, the timing
premium equals zero, consistent with the behavior of 40% of the subjects in the
experiment.
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As a direct consequence of this result, I show that in a stylized portfolio problem,
EZSS preferences lead to investment in risky assets during the initial period and
discourage further risky investment later on-even if condition (1) holds. Consequently,
the optimal consumption plan resolves early, at the initial stage. This consumption
pattern cannot arise under either the Epstein–Zin or DOCEmodels, which predict late
and gradual resolution of consumption, respectively, under the same condition. This
finding highlights the distinct empirical predictions of the EZSS model.

Related literature

The theoretical paper closest to the present one is Kubler et al. (2019). One of their
major contributions is to construct a restricted set of consumption programs such
that DOCE preferences satisfy time consistency. Because these preferences always
satisfy the separation of time and risk preferences and indifference to the timing
of risk resolution, they are able to obtain preferences that on this restricted domain
satisfy all three of these important properties combined. I adopt a similar approach,
which, however, differs from theirs in several ways. From a technical perspective, the
assumption on the domain they consider (ICER) is based on a condition about the
distribution of asset returns, while I consider a general topological assumption. More
substantially, the preferences I axiomatize in Theorem 2 “mix” DOCE preferences
and Epstein–Zin in such a way that they are compatible with a moderate preference
for early resolution of uncertainty even if relative risk aversion is greater than the
reciprocal of EIS, a feature which neither DOCE nor Epstein–Zin preferences can
have.

The concept of timing premium has also been applied to retirement and social
security (Caliendo et al. 2023). Andreasen and Jørgensen (2020), building on the
results of Epstein et al. (2014), propose a generalization of Epstein–Zin preferences
to address existing puzzles in asset pricing. However, their model still predicts an
excessively high timing premium.

Mywork also draws fromJohnsen andDonaldson (1985),whoprovide an axiomatic
representation of recursive preferences in a setting with two periods. In particular,
Theorem 1 extends their result to multiple periods, with the novelty that dynamic
consistency can hold only on a strict subdomain of preferences. Hammond (1989)
argues that the work of Johnsen and Donaldson contains a hidden assumption which
restricts the domain of consumption, therefore explaining the apparent contradiction
with the work of Weller (1978) showing that dynamic consistency, along with other
standard conditions, implies expected utility behavior. Epstein and Le Breton (1993)
also link dynamic consistency to expected utility. In the present paper, the filtration
which describes the evolution of information is taken to be fixed, a standard assumption
in applications; therefore their results do not apply.

Both Sarin andWakker (1998) and Epstein and Schneider (2003) under an assump-
tion of monotonicity of preferences characterize recursive multiple prior preferences
(see also Wakai 2015; Amarante and Siniscalchi 2019). Bommier et al. (2017) and
Marinacci et al. (2023) show that this assumption ofmonotonicity in general has strong
restrictions on recursive preferences.
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I consider a formal setting of uncertainty [unlike a setting of risk such as in Kreps
and Porteus (1978) or Epstein and Zin (1989)]. This setting permits considering recur-
sivemodels of ambiguity aversion, which are well known to be relevant in applications
[e.g see Ju and Miao (2012) or Collard et al. (2018)].

2 Preliminaries

2.1 Framework

Time is discrete and varies over a finite horizon t ∈ {0, 1, . . . , T } ≡ T . The infor-
mation structure is described by a filtered space (�, {Gt }t∈T ) where � is an arbitrary
set of states of the world and G = {Gt }t∈T is a sequence of σ -algebras such that
G0 = {�,∅} that satisfy Gt ⊂ Gt+1 for t = 0, . . . , T − 1.1 For simplicity, assume
that every algebra Gt , t ∈ T , is generated by a finite partition, where Gt (ω) denotes
the element of the partition containing ω ∈ �. The assumption of finiteness is not
necessary but avoids the need to formally establish the existence of each recursive
utility model considered in this paper.2

Let X denote the set of outcomes, which is assumed to be a convex subset of R
n .

The main case we are interested in is X = R+. An act or consumption program is
an X -valued, G-adapted process, that is, a sequence ( ft )t∈T such that ft : � → X
is Gt -measurable for every t ∈ T . F is the set of all consumption programs. D is the
set of deterministic consumption programs, d = (d0, d1, . . . , dT ) ∈ D if and only if
dt is measurable w.r.t. G0 for all t . Since each Gt is finitely generated, the set of all
Gt -measurable acts can be endowed with the product topology. It follows that we can
endowF with the product topology.3 Under this topology,F is a metrizable separable
space, and therefore any subset of R ⊆ F is also a metrizable separable space.

Given a measurable space (S, �) and a subset K ⊆ R, let B0(�, K ) denote the
set of simple �-measurable functions with range contained in K . A function I :
B0(�, K ) → R is (i) continuous if it is continuous in the sup-norm topology; (ii)
monotone if ξ(s) ≥ ξ ′(s) for every s ∈ S implies I (ξ) ≥ I (ξ ′); (iii) strictly monotone
if it is monotone and ξ(s) ≥ ξ ′(s) for every s ∈ S with one strict inequality implies
I (ξ) > I (ξ ′); and (iv) normalized if I (x) = x for every x ∈ R (where x denotes
the constant function x1�). Call I a certainty equivalent if it is continuous, strictly
monotone, and normalized. Given a probability measure P defined on (S, �), an
expected utility functional is given by EPξ = ∫

ξ(s)dP(s).
The primitives of interest are a family of G-adapted weak orders (complete and

transitive relations)
{
t,ω

}
(t,ω)∈T ×�

on F .4 Let 
0 denote the preference at time

1 See Stokey and Lucas (1989) for canonical interpretations of this setting in terms of shocks/observations.
2 See Marinacci and Montrucchio (2010) for a thorough treatment of the topic.
3 Denoting with |Gt | the number of elements of the partition that generates Gt , the set

{ f : � → X : f is measurable w.r.t. Gt },
can be identified with a subset of R

|Gt |, and therefore F can be endowed with the product topology.
4 By G-adapted I mean that 
t,ω=
t,ω∗ whenever Gt (ω) = Gt

(
ω∗)

.
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zero. For brevity, I typically denote the collection of preferences
{
t,ω

}
(t,ω)∈T ×�

with 
t,ω only. Say that a collection of real-valued functions (Vt (ω, ·))t,ω, where for
every t ∈ T , Vt : � × R → R and D ⊆ R ⊆ F , represents 
t,ω over R if for every
h, h′ ∈ R

Vt (ω, h) ≥ Vt (ω, h′) ⇐⇒ h 
t,ω h′ for every (t, ω).

A collection (It,ω)t,ω of certainty equivalents is adapted to (Vt (ω, ·))t,ω and G if each
It,ω is defined on the set {ξ ∈ B0 (Gt+1, Vt+1) : ξ = Vt+1(·, f ), f ∈ R} and satisfies
It,ω = It,ω∗ when Gt (ω) = Gt (ω∗).

Recursive preferences are based on the notion of a time aggregator. Given A ⊆ R, a
functionW : X×A → R is a time aggregator if it is continuous and strictly increasing
in the second variable.

2.2 Recursive preferences

I consider a general notion of recursive representation of preferences.

Definition 1 LetR satisfyD ⊆ R ⊆ F . Preferences 
t,ω admit a recursive represen-
tation over R if and only if there exist (Vt (ω, ·))t,ω that represent 
t,ω over R such
that Vt (ω,R) = Vt (ω′,R) ≡ Vt ⊆ R for every ω,ω′ ∈ �, VT (ω, h) = u(hT (ω))

for every ω ∈ �, and for every 0 ≤ t < T ,

Vt (ω, h) = W
(
ht (ω), It,ω (Vt+1(·, h))

)
for every ω ∈ � and h ∈ R, (2)

where

(i) u : X → R is a continuous function that satisfies u(z) = 0 for some z ∈ X ;
(ii) (It,ω)t,ω is a collection of certainty equivalents adapted to (Vt (ω, ·))t,ω;
(iii) W : X × ∪τ≥t+1Vτ → R is a time aggregator that satisfies W (x, u(z)) = u(x)

for every x ∈ X .

Observe that for each t ∈ T and h ∈ F , the function Vt (·, h) is Gt -measurable because
ht is Gt -measurable and (It,ω)t,ω is adapted to G.

A general recursive representation of 
t,ω can be thus identified by its parameters
(W , u, (It,ω)t,ω). Below I describe the most common types of specifications under the
assumptions that X = [0,∞) and u(0) = 0. Observe that in these examples we have
that z = 0 and W (x, u(z)) = u(x) for every x ∈ [0,∞).

• Recursive discounted expected utility (RDEU) preferences, where W (x, y) =
u(x) + β y, β ∈ R+ and It,ω(ξ) = EPt,ω ξ with each Pt,ω being a probability on
(�,Gt+1).

• Recursive second-order expected utility preferences, where W (x, y) = u(x) +
β y, β ∈ R+ and It,ω(ξ) = φ−1

(
EPt,ωφ(ξ)

)
for some strictly increasing and

concave function φ : u(X) → R and each Pt,ω is a probability on �. Such a
class of recursive preferences offers a simple separation between risk aversion and
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intertemporal substitution. The most important instances of such preferences are
Epstein–Zin preferences (EZ) Epstein and Zin (1989), which are given by5

u(x) = xρ

ρ
0 �= ρ < 1,

and

φ(x) = ρ

α
x

α
ρ 0 �= α < 1, 0 �= ρ < 1.

• Recursive maxmin expected utility (RMEU) preferences, see Epstein and Wang
(1994), Epstein and Schneider (2003) where It,ω(ξ) = minp∈Ct,ω Epξ , with each
set Ct,ω being a convex and weak∗-compact set of probabilities with full support
on (�,Gt+1).

3 Relevant domains of consumption

Instead of analyzing all possible consumption programs, dynamic models in eco-
nomics consider restricted, relevant subsets of consumption programs that are both
practicallymeaningful andmathematically structured. These domains arise from prac-
tical constraints and technical requirements.

For example, in consumption-savings applications, consumption ct at every period
t is a non-trivial function of income yt , and uncertainty about income resolves grad-
ually over time. Programs featuring one-shot resolution of uncertainty are therefore
unnecessary for solving this kind of problem. In consumption-based asset pricingmod-
els (e.g., see Martin 2013), the main variable of interest is log consumption growth,
which is modeled as an i.i.d. process for technical convenience rather than following
a general structure.

For this reason, I suggest that the axioms of recursive preferences need to hold only
on a strict subset of F , a relevant domain in applications.

Consumption programs resolving gradually. A consumption program f ∈ F
involves early resolution if for some t ≥ 1, ft is measurable w.r.t. Gτ for some τ < t .
In words, this means that time t consumption is known at the earlier period τ .

Definition 2 (Domain of gradual resolution) For every t ∈ T , let Ft denote the set
given by

Ft = { f ∈ F : ft is Gτ -measurable for some τ < t �⇒ f ∈ D}.

Define the relevant domain to be GR = ∩T
t=1Ft .

In words, this means that a consumption program in GR either involves no early
resolution or it is deterministic. Therefore, it holds that D ⊆ GR � F . To illustrate,

5 Epstein and Zin (1989) consider a more general class of certainty equivalents, but for simplicity I focus
on the case of expected utility.
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Fig. 1 Gradual resolution versus early resolution when S = {a1, a2} and � = S2

Fig. 1 provides an example of consumption programs (assuming x �= y) that resolve
early (bottom) and gradually (top). Therefore, only the top consumption program
belongs to GR.

Independent consumption programs. Another important example of consumption
domain relevant in applications is that of consumption programs that are independently
distributed over time. In order to consider a notion of independent programs, one has
to consider the same setup as in Strzalecki (2013). Specifically, we have that � = ST

with T ≥ 2, where (S, �) is a finite measurable space. Moreover, � = 2S and let
Gt = �t × {∅, S}T−t . In words, this means that at time t one knows the realization of
(ω, t) = (s1, . . . , st ) := st , but is ignorant about the future. Observe that in this case
we have Gt ((s1, . . . , sT )) = {s1} × . . . × {st } × {∅, S}T−t .

Definition 3 The set of independent consumption programs is given by

I N D = {h ∈ F : there exist ( ft )t with ft ∈ XS such that ht (s1, . . . , st−1, ·) = ft (·)}.

In words, this set contains consumption programs that are “independent” (ht does
not depend on (s1, . . . , st−1) but not necessarily “identically distributed” (ht depends
on a function ft : S → X which is not identical over time).

Properties of GR and I N D. The consumption domainsGR and I N D are alsomathe-
matically rich enough to axiomatize a general recursive representation and disentangle
a general notion of risk aversion from intertemporal substitution. These results, which
I discuss in Sect. 4.1, rely on the following proposition.

Proposition 1 The consumption domains GR and I N D are separable and connected
metric spaces.

4 Recursive utility over the relevant domain

Let R satisfy D ⊆ R ⊆ F . I show that ifR is topologically connected, then one can
obtain an axiomatic representation of recursive preferences overR. The first axiom is
a standard continuity requirement.
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Fig. 2 An illustration of an
implication of stationarity

Axiom 1 (Continuity) For every h ∈ R the sets

{
f ∈ F : f 
t,ω h

}
,

and

{
f ∈ F : h 
t,ω f

}
,

are closed.6

Given t, t ′ ∈ T such that t ≤ t ′, x, y, z ∈ X , and d ∈ D, (d−t−1, y, xT−t ′ , zt−t ′)
denotes the deterministic consumption stream that pays dτ at times τ = 0, . . . , t − 1,
y at time t , x at times τ = t+1, . . . , T +t−t ′ and z at times τ = T +t−t ′+1, . . . , T .

Axiom 2 (Stationarity) There exists z ∈ X such that for every t ≤ t ′, ω, ω′ ∈ �,
d ∈ D, y, ȳ, x, x̄ ∈ X

(d−t−1, y, xT−t ′ , zt−t ′) 
t,ω (d−t−1, ȳ, x̄ T−t ′ , zt−t ′) ⇐⇒
(d−t ′−1, y, xT−t ′) 
t ′,ω′ (d−t ′−1, ȳ, x̄ T−t ′).

This axiom of stationarity differs from the standard stationarity axiom because of
the finite horizon structure. It requires (i) the existence of a “null element” z ∈ X ,
which represents a state that yields noutility, and (ii) that preferences over deterministic
programs remain invariant under time shifts.

To illustrate an implication of stationarity: if today I prefer consuming x over x̄
for T periods and then consuming nothing (z) in the final period, this is equivalent
to preferring x over x̄ for T periods starting tomorrow. See Fig. 2 for a graphical
representation.

The next axiom, which I refer to as (restricted) consequentialism, requires that the
decision maker at a node (t, ω) does not care about (i) what an act pays on unrealized
events nor (ii) what it pays at earlier time periods.

Axiom 3 (Restricted Consequentialism) For all t ∈ T and ω ∈ �, and all acts f , g ∈
R, if fk

(
ω′) = gk

(
ω′) for all k ≥ t and all ω′ ∈ Gt (ω), then f ∼t,ω g.

Observe that the above axiom implies that the ranking of a program f ∈ R by
t,ω

depends only on ( ft (ω), ft+1, . . . , fT ).
Finally, the last axiom excludes preference reversals as new information arrives.

6 Recall thatF is endowed by the product topology, and that thereforeR can be endowed with the relative
topology.
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Axiom 4 (Restricted Dynamic Consistency) For all t ∈ T , and ω ∈ �, and programs
f , g ∈ R that yield identical outcomes up to and including period t, if f 
t+1,ω′ g
for all ω′ ∈ Gt (ω), then f 
t,ω g and if f �t+1,ω′ g for some ω′ ∈ Gt (ω), then
f �t,ω g.7

Observe that these axioms are restricted to hold only for the relevant domain of
consumption R, and need not hold on the entire domain F . The next representation
theorem characterizes recursive utility under very general conditions (cf. Kreps and
Porteus (1978); Johnsen and Donaldson (1985); Chew and Epstein (1991); Skiadas
(1998); Wang (2003); Hayashi (2005); Bommier et al. (2017)), allowing for both
changing beliefs and ambiguity sensitive preferences. The only loss of generality is
constituted by the exclusion of an infinite horizon, which, however, can be overcome
by means of appropriate technical conditions.

Theorem 1 (Recursive representation) Assume thatR is connected and satisfiesD ⊆
R ⊆ F . Preferences 
t,ω satisfy axioms 1–4 if and only if they admit a recursive
representation over R.

Proof See the appendix. ��
At a technical level, the main difficulty introduced by weakening the axiom of

dynamic consistency is related to showing that R ⊆ F is rich enough to construct
the certainty equivalents of the recursive representation. Furthermore, a priori, it is
not obvious that there are connected domains R strictly contained within F . In the
appendix (see the proof Proposition 1 and Remark 4), I show that GR and I N D are
connected. Hence, Theorem 1 shows that gradual resolution of uncertainty is enough
to provide a recursive representation of preferences. Specifically, Theorem 1 enables
axiomatizations of notable special cases of recursive preferences over a restricted
domain, such as Epstein–Zin preferences.

Definition 4 (Epstein–Zin over a restricted domain) Say that preferences 
t,ω admit
an Epstein–Zin (EZ) representation (α, ρ, β) over R ⊆ F if there exist (Vt (ω, ·))t,ω
that represent 
t,ω such that

Vt (ω, h) = ht (ω)ρ

ρ
+ β(EPt,ω (Vt+1(·, h)

α
ρ )

ρ
α for every h ∈ R, (3)

where 0 �= α < 1 and 0 �= ρ < 1.

For simplicity, I do not provide a complete axiomatization of these preferences
here. However, such an axiomatization can be obtained by augmenting axioms 1–4
with additional axioms of time separability over deterministic consumption programs
and an axiom of homotheticity of preferences.

I close with a few remarks.

7 It is possible to consider a weaker axiom of dynamic consistency, which would result in a certainty
equivalent that It,ω need not be strictly monotone. This could be done by defining appropriately the notion
of a 
t,ω-nonnull event. Then one can require that if f �t+1,ω′ g for every ω′ in a 
t,ω -nonnull event,
then f �t,ω g. I chose to present the stronger representation, as DC is easier to state.
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Remark 1 Onecouldwonderwhether given a recursive representation (W , u, (It,ω)t,ω)

onR the only “reasonable” extension toF is given by the straightforward extension of
(W , u, (It,ω)t,ω) to F . In Sect. 5, I show that one can extend preferences in a different
fashion. Specifically, I introduce preferences that have an Epstein–Zin representation
on R but on F \ R admit the representation introduced by Selden and Stux (1978)
and Selden (1978). Notably, such a “hybrid” model features indifference to timing of
resolution of uncertainty.

Remark 2 The theorem makes no reference to uniqueness of the representation.
Uniqueness can be achieved by adding further conditions that imply uniqueness of
u : X → R. For example, one can assume that X is the set of lotteries over a finite set
Z and obtain uniqueness of u by means of specific axioms such as independence.

4.1 Separating intertemporal substitution from attitudes toward uncertainty

A simple yet important implication of Theorem 1 is that to separate risk aversion from
the intertemporal rate substitution it is enough to observe only choices over a subset
D ⊆ R ⊆ F .

Comparative risk aversion can be defined in a similar fashion as in Epstein and Zin
(1989, pp. 949–950) and Chew and Epstein (1991, Theorem 3.2). For any f ∈ R,
(t, ω) and d ∈ D, denote with ( ft (ω), dT−t ) the consumption stream that pays ft (ω)

at time t and dτ at times τ = t + 1, . . . , T .

Definition 5 
1
t,ω is more risk averse than 
2

t,ω if for every f ∈ R, d ∈ D and (t, ω)

with t < T

( ft (ω), dT−t ) 
2
t,ω ( ft (ω), ft+1, . . . , fT )

�⇒ ( ft (ω), dT−t ) 
1
t,ω ( ft (ω), ft+1, . . . , fT ),

and

( ft (ω), dT−t ) �2
t,ω ( ft (ω), ft+1, . . . , fT )

�⇒ ( ft (ω), dT−t ) �1
t,ω ( ft (ω), ft+1, . . . , fT ).

We obtain the following comparative statics result.

Proposition 2 Consider preferences
i
t,ω, i = 1, 2 that admit the representation in (2).


1
t,ω is more risk averse than 
2

t,ω if and only if they admit recursive representations
(Wi , ui , (I it,ω)t,ω), i = 1, 2 such that u1 = u2, W 1 = W 2 and I 1t,ω(ξ) ≤ I 2t,ω(ξ) for
every ξ ∈ {ξ ∈ B0(Gt+1, Vt+1) : ξ = Vt+1(·, f ), f ∈ R} and every (t, ω).

Remark 3 Observe that if R = D then the “only if” part of the statement is trivially
true since I it,ω are defined on deterministic prospects so that I 1t,ω = I 2t,ω. More in
general, this will be true whenever

{ξ ∈ B0(Gt+1, Vt+1) : ξ = Vt+1(·, f ), f ∈ R}
= {ξ ∈ B0(Gt+1, Vt+1) : ξ = Vt+1(d), d ∈ D}. (4)
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Now consider the special case of EZ preferences 
i
t,ω with representation

(αi , ρi , βi ), i = 1, 2, over R such that (4) does not hold. In this case we obtain
the following.

Corollary 1 (
t,ω)1t,ω ismore risk averse than (
t,ω)2t,ω if and only ifβ1 = β2,ρ1 = ρ2
and α1 ≤ α2.

Proof The result follows immediately by the previous proposition upon observing that

I (ξ) = (EPξα)
1
α is increasing in α (see Theorem 16, Hardy et al. (1952)). ��

This result establishes that domains of consumption such asR = GR orR = I N D
are rich enough to disentangle risk aversion from intertemporal substitution, since (4)
does not hold in these cases.

5 The Epstein–Zin–Selden–Stuxmodel

Theorem 1 provides a foundation for recursive preferences over a restricted domain,
including EZ preferences. This naturally raises the question: can EZ preferences,
defined over a restricted domain, be meaningfully extended to the broader domainF?
Here, I introduce a novel class of preferences that admit an EZ representation over
a restricted domain and are capable of addressing experimental evidence regarding
how individuals value the timing of uncertainty resolution. The newmodel I introduce
“merges” EZ preferences with DOCE preferences.

DOCE preferences. Axiomatized in Selden (1978) and Selden and Stux (1978),
DOCE preferences replace risky consumption in each period by certainty equiva-
lents with respect to a utility function v(·) and evaluate the resulting sequence of
certainty equivalents with discounted utility with respect to a utility function u(·).
Unlike EZ preferences, DOCE preferences are indifferent to the timing of the res-
olution of uncertainty (see Selden and Stux 1978 and Kubler et al. (2019)). Here I
adopt Strzalecki’s (2013) approach to define indifference to the timing of resolution
of uncertainty. Therefore, I consider the IID setting described in Sect. 3 and assume
that X = [0,∞) or X = (0,∞).

Definition 6 Preferences
t,ω admit a DOCE representation if they can be represented
over F by a family (Vt (st , ·))st such that, for some probability measure P on S and
continuous, strictly increasing functions u, v : X → R, the following holds for every
h ∈ F :

Vt (s
t , h) = u

(
ht (s

t )
) +

T−t∑

j=1

β j u
(
v−1

[
E∏ j

τ=1 P(st+τ )

(
v(ht+ j (s

t , ·)))
])

.

Of particular interest is the positively homogeneous case where, for 0 �= α < 1 and
0 �= ρ < 1, we have u(x) = xρ

ρ
and v(x) = xα

α
. As in Epstein–Zin preferences, this

specification enables a separation between the EIS, given by 1
1−ρ

, and risk aversion,
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given by 1−α. Hall (1985), Zin (1987), Attanasio andWeber (1989), and Kubler et al.
(2019) have studied applications of different variations of such preferences.

While EZ preferences permit only a partial separation between the EIS and relative
risk aversion, DOCE preferences achieve a complete separation.8 Unlike EZ prefer-
ences, DOCE preferences may fail to satisfy dynamic consistency. Notably, however,
DOCE preferences can be dynamically consistent on certain restricted domains. For
instance, as suggested byKubler et al. (2019), the homogeneous special case of DOCE
preferences is dynamically consistent when restricted toR = I N D. In this scenario,
DOCE preferences become ordinally equivalent to EZ preferences over the domain
R = I N D.

EZSS Preferences. The Epstein–Zin–Selden–Stux (EZSS) preferences introduced
here are defined by Epstein–Zin utility on the relevant domain and by the DOCE
model elsewhere.

Definition 7 Preferences 
t,ω admit an EZSS representation (α, ρ, β,R) if they can
be represented overF by a family (Vt (st , ·))st such that, for some probability measure
P on S, and parameters 0 �= α < 1, 0 �= ρ < 1, the following holds:

For every h ∈ F \ R:

Vt (s
t , h) = ht (st )ρ

ρ
+

T−t∑

j=1

β j 1

ρ

[
E∏ j

τ=1 P(st+τ )
hα
t+ j (s

t , ·)
] ρ

α
, (5)

And for every h ∈ R:

Vt (s
t , h) = ht (st )ρ

ρ
+ β

(
EP

[
V t + 1(·, h)

α
ρ

]) ρ
α

. (6)

Therefore, preferences that admit an EZSS representation are guaranteed to satisfy
dynamic consistency only on the relevant domainR. At the same time, as I am going
to show, they satisfy indifference to the timing of resolution of uncertainty “outside”
ofR. Moreover, thanks to Proposition 2, EZSS preferences can separate risk aversion
from intertemporal substitution. Finally, as noted previously, when the relevant domain
isR = I N D, EZ preferences are ordinally equivalent to DOCE preferences, making
EZSS preferences also ordinally equivalent to DOCE preferences in this special case.

Axiomatic foundation. Consider preferences 
t,ω that admit an EZ representation
(α, ρ, β) over R ⊆ F . Since we assume that 
t,ω admit an EZ representation, this
implicitly assumes that the preferences 
t,ω satisfy Axioms 1–4.

The first axiom requires consequentialism over the entire domain F .

Axiom 5 (Consequentialism) For all t ∈ T and ω ∈ �, and all acts f , g ∈ F , if
fk

(
ω′) = gk

(
ω′) for all k ≥ t and all ω′ ∈ Gt (ω), then f ∼t,ω g.

8 Epstein and Zin (1989) observe that attitudes toward timing are intertwinedwith the EIS and risk aversion.
In contrast, DOCE preferences are indifferent toward timing.

123



L. Stanca

Now observe that because in this setting the state space has a product structure, it is
possible to rank consumption programs in terms of temporal resolution of uncertainty
(see Strzalecki 2013).

Definition 8 Fix t ≤ T − 2. Say that h ∈ F resolves earlier than h′ ∈ F whenever
there exist ft+2, . . . , fT ∈ XS and x0, . . . , xt+1 ∈ X such that h j = h′

j = x j for all
j ≤ t + 1, h j (s1, . . . , s j ) = f j (st+1) for j ≥ t + 2, and h′

j (s1, . . . , s j ) = f j (st+2).

The next axiom requires indifference toward the timing of resolution of uncertainty
on the domain F \ R.

Axiom 6 (Indifference to timing) Consider h, h′ ∈ F \ R such that for some s̄t =
(s̄1, . . . , s̄t ) with 1 ≤ t ≤ T − 2 the consumption program

(h0, h1(s̄1), h2(s̄1, s̄2), . . . , ht (s̄
t ), . . . , hT (s̄t , ·)),

resolves earlier than

(h′
0, h

′
1(s̄1), h

′
2(s̄1, s̄2), . . . , h

′
t (s̄

t ), . . . , h′
T (s̄t , ·)),

and hτ (s1, . . . , sτ ) = h′
τ (s1, . . . sτ ) for every (s1, . . . , sτ ) with τ < t and

hτ (s1, . . . , sτ ) = h′
τ (s1, . . . sτ ) for every (s1, . . . sτ ) such that τ ≥ t and (s1, . . . , st ) �=

(s̄1, . . . , s̄t ). Then it holds that h ∼t ′,ω h′ for every t ′ ≤ t .

In words, if h resolves earlier than h′, but otherwise these programs are equivalent,
one should be indifferent.

Consider now preferences 
EZ
t,ω that have an EZ representation (α, ρ, β) on F .

The next axiom requires that, for each period, risky consumption profiles are assessed
through certainty equivalents, consistent with such Epstein–Zin preferences 
EZ

t,ω .

Axiom 7 (Consistency with Epstein–Zin) Let h, h′ ∈ F \ R be such that there
exist, t , f , f ′ : S → X and (s1, . . . , st−1) such that ht (s1, . . . , st−1, ·) = f (·),
h′
t (s1, . . . , st−1, ·) = f ′(·), hτ = h′

τ = 0 for all τ �= t and ht (s̄t ) = h′
τ (s̄

t ) = 0
whenever (s̄1, . . . , s̄t−1) �= (s1, . . . , st−1). Then

h 
t,ω h′ ⇐⇒ h 
EZ
t,ω h′.

The last axiom is taken from Selden and Stux (1978) (see their Assumption 3).

Axiom 8 (Risk Independence) Given any pair h, h′ ∈ F\R which are identical
except at the node (s1, . . . , st−1), then letting h̄t (s1 . . . , st−1, ·) = ht (s1 . . . , st−1, ·),
h̄

′
t (s1 . . . , st−1, ·) = h′

t (s1 . . . , st−1, ·), and h̄t = h̄
′
t = 0 otherwise,

h̄ ∼t,ω h̄
′ �⇒ h ∼t,ω h′.

These axioms characterize EZSS preferences.
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Theorem 2 Assume that R is connected and satisfies D ⊆ R ⊆ F . Preferences 
t,ω

satisfy axioms 5–8 if and only if they admit an EZSS representation (α, ρ, β,R).

By Theorem 1, we can consider Epstein–Zin (EZ) preferences over a restricted
domain. Theorem 2 shows that these preferences can be extended to an EZSS rep-
resentation. However, note that the continuity axiom does not hold over the entire
domain F . As a result, the EZSS model may exhibit discontinuous jumps in util-
ity when transitioning from the domain R to F\R. Nevertheless, as I will show in
Sect. 5.1.1, these potential discontinuities do not hinder the application of the EZSS
model to relevant applied problems, such as consumption-investment decisions.

At the same time, such an extension satisfies a form of indifference to the timing of
resolution of uncertainty. Clearly, the full extent of such an indifference to timing of
resolution depends on how “large” or “small”R is (whenR = ∅, the model collapses
to DOCE preferences, exhibiting full indifference to the timing of resolution). This
flexibility can lead to interesting applications, as I explore next.

5.1 Application: timing premia

The notion of a timing premium was introduced by Epstein et al. (2014). It quantifies
how much an individual would pay to resolve all uncertainty at t = 1, as opposed to
experiencing a gradual resolution of uncertainty over time. This concept has also been
applied to dynamic models of retirement and social security (Caliendo et al. 2023),
where it is used to measure the quantitative impact of uncertainty regarding the timing
of retirement. Understanding the determinants of the timing premium is therefore
crucial for evaluating the financial costs of policies that influence the retirement age.

For Epstein–Zin recursive utility, α < ρ implies a positive timing premium, while
α > ρ implies a negative timing premium. In contrast, DOCE preferences always
imply a zero timing premium (Kubler et al. 2019). Epstein et al. (2014) argue that stan-
dard parameter assumptions in the Epstein–Zin model imply that consumers would
pay implausibly high timing premia for early resolution of consumption risk. However,
Meissner and Pfeiffer (2022) find that, on average, the timing premium is moderate,
around 5%, with about 40% of subjects showing indifference to the timing of uncer-
tainty resolution. Moreover, the estimated preference parameters satisfy

relative risk aversion < EIS−1 or equivalently α > ρ,

a relationship that, under Epstein–Zin preferences, predicts a negative timing
premium—contradicting these experimental findings.

I show that, in contrast, the EZSS model can explain this evidence. Specifically,
when the relevant domain is I N D, EZSS preferences are compatible with a positive
timing premium even if α > ρ. With the estimated parameters (α, ρ) from Meissner
and Pfeiffer (2022), the timing premium under EZSS preferences is approximately
4%, indicating a moderate preference for early resolution of uncertainty. This level is
consistent with the experimental finding in Meissner and Pfeiffer (2022) of a timing
premium around 5%. Hence, EZSS model provides an additional feature that neither
Epstein–Zin nor DOCE preferences can explain individually. Furthermore, when the
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Fig. 3 h and h̄ in Example 1

relevant domain is GR, the timing premium is zero. Finally, I show applications of
this result to a simple consumption-investment problem over a finite horizon.

Timing premium of EZSS preferences. Consider again the IID setting, and as in
Meissner and Pfeiffer (2022) assume that T = 2. Let preferences
t,ω admit an EZSS
representation (α, ρ, β,R)with corresponding utilities

(
Vt

(
st , ·))st . To introduce the

notion of a timing premium, I use the ordinally equivalent representation defined by

V̂ t = (ρVt )
1
ρ ,

for t = 0, 1, 2.9 For each h = (h0, h1, h2) ∈ I N D, let h̄ denote the corre-
sponding early resolution consumption program, defined as h̄ = (h0, h1, h̄2), where
h̄2(s1, s2) = h2(s1) for every (s1, s2) ∈ S2. Following Epstein et al. (2014), I define
the timing premium as follows.

Definition 9 For every h ∈ I N D, the timing premium is defined as

π∗(h) = 1 − V̂ 0(h̄)

V̂ 0(h)
.

Next, I analyze specific values of the timing premium for EZSS preferences, using
the estimated preference parameters from Meissner and Pfeiffer (2022).

Example 1 Figure3 shows the example taken from the experiment in Meissner and
Pfeiffer (2022), with consumption program h and its corresponding early resolution
program h̄. Here, S = {a1, a2}, h = (0, 100, h2), where h2(s1, s2) = f (s2), f :
{a1, a2} → [0,∞), f (a1) = 170, and f (a2) = 10. Consider EZSS preferences
with representation (α, ρ, β,R), based on the estimated parameters from Table 4 in
Meissner and Pfeiffer (2022), so that (α, ρ, β) = (0.819, 0.579, 1.193).10

9 With this normalization, recursive utilities are positively homogeneous, which simplifies the definition
of the timing premium.
10 Note that here β > 1, which Meissner and Pfeiffer (2022) discuss as a potentially counter-intuitive
result.
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• Case 1:R = F : WhenR = F , the EZSS model reduces to standard Epstein–Zin
preferences. Since α > ρ, the timing premium is negative (Epstein et al. 2014),
reflecting a moderate preference for late resolution of uncertainty. Specifically, I
obtain π∗(h) ≈ −4.2%.

• Case 2: R = I N D: When R = I N D, h ∈ I N D, but h̄ /∈ I N D. In this case,
π∗(h) ≈ 4%, consistent with the average timing premium of approximately 5%
reported in Meissner and Pfeiffer (2022).

• Case 3: R = GR: When R = GR, h, h̄ /∈ GR. By Axiom 6, this implies
π∗(h) = 0.

For related calculations, see Sect. 1 in the Appendix. �

The main finding in Meissner and Pfeiffer (2022) is a negative correlation between
the theoretically predicted timing premia and the timing premia elicited in the
experiment.While there is evidence of preferences over the temporal resolution of con-
sumption uncertainty, EZ preferences fail to explain the underlying mechanism. My
results indicate that this evidence can be explained by relaxing dynamic consistency—
while still maintaining the tractability of dynamic programming in applications.

5.1.1 The timing premium in consumption-portfolio decisions

I now examine the implications of the previous analysis of timing premia for dynamic
consumption-portfolio decision problems. The main result is that because EZSS pref-
erences can exhibit a positive timing premium even when α > ρ, then it can happen
that the optimal consumption plan resolves early at the initial time period, while for EZ
utility with α > ρ the optimal consumption plan resolves late.11 Finally, for DOCE
preferences, the optimal consumption plan resolves gradually over time.

I consider the consumption-portoflio selection problem analyzed in Kubler et al.
(2019). Formally, there is a finite horizon of T > 0 periods, where again we consider
the IID setting with X = [0,∞). At each node st , the consumer has to decide the
level of consumption c(st ) ≥ 0. I denote an arbitrary consumption program with
c = (c0, . . . , cT ) ∈ F . Moreover, at each node st there are J > 0 assets with one
period maturities whose returns are described by the vector R(st+1) = (R(st+1))Jj=1,
and n j (st ) denotes the amount invested in asset j at that node. Therefore, an arbitrary
portfolio investment strategy n = (n0, . . . , nT−1) is a process such that each nt :
St → R

J is Gt -measurable. Denote with N the set of all investment strategies.
The consumer begins with initial wealth w. The budget constraints are defined as

follows. In period 1, the consumer allocates income between consumption and asset
purchases:

c(s0) = w −
J∑

j=1

n j (s0).

11 I thank an anonymous referee for suggesting to consider this application.
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For periods 1 ≤ t < T , at each node st , the income is given by the return on the
portfolio chosen in the previous period, and the budget constraint is

c(st ) = n(st−1) · R(st ) −
J∑

j=1

n j (s
t ),

where n(st−1) · R(st ) denotes the dot product between the asset holdings from period
t − 1 and the return vector at node st . In the final period T , no new asset purchase is
made so that the constraint becomes

c
(
sT

)
= n

(
sT−1

)
· R

(
sT

)
.

Finally, preferences over F are represented by the relation 
t,ω, which admits
an EZSS representation (α, ρ, β,R) with corresponding utilities

(
Vt (st , ·)

)
st . Con-

sequently, the resolute consumer’s problem (ex-ante optimal; see, e.g., McClennen
(1990)) involves choosing a consumption plan and asset holdings across all nodes to
maximize utility:

max
(c, n)∈F×N

V0(c)

subject to c ≥ 0,

c(s0) = w −
J∑

j=1

n j (s0),

c(st ) = n(st−1) · R(st ) −
J∑

j=1

n j (s
t ), t = 1, . . . , T − 1,

c
(
sT

)
= n

(
sT−1

)
· R

(
sT

)
.

To examine the implications of the previous analysis on timing premia, I now
consider a special three-period example with two states and two assets, one of which
is riskless. Unlike EZ and DOCE preferences, under the condition α > ρ, the positive
timing premium associated with EZSS utility induces the agent to avoid investing in
the risky asset at the second-period nodes, leading to early resolution of the optimal
consumption plan.

Example 2 Let T = 2 and S = {H , L}, and assume the consumer can invest in a
riskless asset f and a risky asset r in each period. I compute the optimal resolute
(ex-ante optimal) consumption and investment plans under EZ, DOCE, and EZSS
preferences, using parameter estimates from Meissner and Pfeiffer (2022), so that
α = 0.819 > ρ = 0.579 and β = 1.193.

Assume further that w = 10 and R f (st ) = 1 for every st . The stochastic returns
on the risky asset are given by:

Rr (H) = Rr (L, H) = Rr (H , H) = 1.1, Rr (L) = Rr (L, L) = Rr (H , L) = 0.9.
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Fig. 4 Trees representing optimal consumption for EZ (top-left), DOCE (top-right), and EZSS (bottom-
center) preferences when α > ρ. EZ resolves late, DOCE resolves gradually, while EZSS resolves early

The two states are equally likely, with P(H) = P(L) = 1
2 . Then the optimal invest-

ment strategies are as follows:

1. WhenR = F , the preferences reduce to Epstein–Zin preferences. In this case, the
optimal investment strategy is:

nr (s0) = 0, n f (s0) = 4.02, nr (H) = nr (L) = 0.76, n f (H) = n f (L) = 1.66.

2. When R = GR, the optimal investment strategy is:

nr (s0) = 7.94, n f (s0) = 0, nr (H) = nr (L) = 0, n f (H) = n f (L) = 4.89.

3. WhenR = ∅, the preferences reduce toDOCEpreferences. In this case, the optimal
investment strategy is:

nr (s0) = 7.95, n f (s0) = 0, nr (H) = nr (L) = 4.89, n f (H) = n f (L) = 0.

For related calculations, see Sect. 1 in the Appendix. Figure4 provides a graphical
representation of the optimal consumption plans implied by these optimal investment
strategies. Notably, under EZSS preferences, the positive timing premium induces the
agent to avoid investing in the risky asset at second-period nodes. Consequently, the
consumption program is characterized by early resolution.
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In contrast, under EZ preferences, since there is a negative timing premium, it
encourages investment in the risky asset exclusively during the second period, resulting
in optimal consumption plans that exhibit late resolution.

Finally, with DOCE preferences, the timing premium equals zero. Therefore, the
agent invests progressively in the risky asset over multiple periods, leading to gradual
resolution of optimal consumption. �

6 Concluding remarks

Models of recursive preferences play a central role in many applications in eco-
nomics. However, they require strong assumption on behavior. According to one
objection against the axiom of dynamic consistency, it is unrealistic to assume the
axiom can hold even when the decision maker is confronted with unrealistic choice
situations. I provided an axiomatization of recursive preferences based on much
weaker assumptions than what is usually assumed. Additionally, I propose a novel
parametric model—the Epstein–Zin–Selden–Stux (EZSS) preferences—which gen-
eralizes Epstein–Zin preferences. These new preferences explain recent empirical
findings concerning individuals’ preferences for the timing of resolution of uncer-
tainty. Moreover, they separate risk aversion from intertemporal substitution, while
still employing conventional dynamic programming methods. I apply these prefer-
ences to a consumption-investment problem and show that—for reasonable parameter
values—these preferences lead to investment in risky assets exclusively during the ini-
tial period and discourage investment afterward. This result opens promising avenues
for future research, especially in retirement planning models.

Appendix

Proof of Proposition 1

Proof First observe thatF is separable and thereforeGR is separable since any subset
of a separable metric space is separable. I now show that GR is path-connected. Take
h ∈ GR and d ∈ D. Clearly if h ∈ D then the result follows by convexity ofD (recall
that X is convex). Assume h ∈ GR \ D. Let {Pt

1 , . . . , P
t
nt } denote the partition of �

that generates Gt . I construct a continuous path ι : [0, 1] → GR that connects h to d.
Since X is convex, for every t we just let ιt (α) = (1−α)ht +αdt . Fix t ≥ 1. Without
loss of generality, assume that nt − nt−1 = 1 and Pt−1

nt−1 = Pt
nt ∪ Pt

nt−1. Consider
ω,ω′ ∈ � such that ω �= ω′, ω ∈ Pt

nt , and ω′ ∈ Pt
nt−1. If (1 − α)ht (ω) + αdt =

(1−α)ht (ω′)+αdt , we obtain a contradiction since ht (ω) = ht (ω′) but h ∈ GR \D.
Therefore, ιt (α) ∈ GR for every α. It follows that we can connect via a path any
f ∈ GR to d ∈ D. Hence, we can connect any h, h′ ∈ GR by a path. We conclude
that GR is path-connected and therefore connected. ��
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Remark 4 The set

I N D = {h ∈ F : there exist ( ft )t with ft ∈ XS such that ht (s1, . . . , st−1, ·) = ft (·)},

is easily seen to be connected by analogous arguments. Observe that such a domain is
the natural extension to T periods of “certain × uncertain" consumption plans [e.g.,
see Selden (1978), Johnsen and Donaldson (1985)]. Indeed, the two coincide when
T = 1.

Proof of Theorem 1

Proof of Theorem 1 I first prove sufficiency of the axioms. First by the axioms of con-
tinuity and (restricted) consequentialism, and sinceR is connected and separable (the
consumption set is separable), Theorem 1 in Debreu (1954) implies that there exist
(sequentially) continuous functions (Vt (ω, ·))t,ω such that

Vt (ω, h) = Vt (ht (ω), ht+1, . . . , hT ) for every h ∈ R.

Observe that by stationarity there exists a (sequentially) continuous function u : X →
R such that VT (ω, h) = u(hT (ω)) and Vt (ω, (x, zT−t )) = u(x) for every ω ∈ � and
t < T .12 Indeed, stationarity implies that

(x, zT−t ) 
t,ω (y, zT−t ) ⇐⇒ (x, zT−t ′) 
t ′,ω′ (y, zT−t ′),

so that the functions (Vt (ω, ·))t,ω can be chosen in such a way that the desired nor-
malization holds. Moreover, by the stationarity axiom we can further normalize u(·)
so that u(z) = 0.

I construct It,ω : B0(Gt+1, Vt+1(ω,R)) → R as follows: for every h, by continuity,
dynamic consistency, (restricted) consequentialism, and stationarity we can construct
dω,t = (dt+1, . . . , dT ) ∈ XT−t such that for any d̄ ∈ D

h ∼t,ω (d̄−t−1, ht (ω), dω,t ) ∈ D. (7)

Observe that all acts in (7) belong toR. In particular,dω,t canbe constructed recursively
as follows. Starting from t = T − 1, observe that for any ω ∈ �, there exist x, y ∈ X
such that

VT−1(hT−1(ω), x) ≥ VT−1(hT−1(ω), hT ) ≥ VT−1(hT−1(ω), y).

To see this, let x = hT (ω̄) and y = hT ( ¯ω), where ω̄ = argmaxω u(hT (ω)) and

¯ω = argminω u(hT (ω)). The statement follows by applying dynamic consistency.
Therefore, by continuity and connectedness of X we can find dT−1,ω ∈ X such that
h ∼T−1,ω (d̄−t−1, hT (ω), dT−1,ω). Now for any t < T − 1 and ω, assume one

12 Recall that (x, zT−t ) denotes the deterministic consumption program that pays x at time t and z in the
subsequent periods.
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has constructed dt+1,ω′ for every ω′ ∈ Gt (ω). Let d̄ t,ω = (ht+1(ω̄), dt+1,ω̄) and

¯dt,ω = (ht+1( ¯ω), dt+1,¯ω
) where

ω̄ = argmaxω′ Vt+1(ht+1(ω
′), dt+1,ω′),

and

¯ω = argminω′ Vt+1(ht+1(ω
′), dt+1,ω′),

Then by dynamic consistency and stationarity we have

Vt (ht (ω), d̄ t,ω) ≥ Vt (ω, h) ≥ Vt (ht (ω), ¯dt,ω).

If any of the two previous inequalities is an equality we are done. Assume both are
strict and that there is no dt,ω such that (7) is satisfied. Then we obtain that

D = {
d ∈ D : h �t,ω d

} ∪ {
d ∈ D : d �t,ω h

}
.

By the axiom of continuity we therefore conclude that D is the union of disjoint open
sets, which contradicts the connectedness of X . Therefore, there must be dt,ω such
that (7) is verified.

Now observe that by stationarity, the previous result implies that for each (t, ω),
t = 0, . . . , T and ω,ω′ ∈ � we have Vt (ω,R) = Vt (ω′,R) ≡ Vt (further observe
that Vt ⊆ Vt ′ whenever t ′ ≤ t). Define

It,ω : B0(Gt+1, Vt+1) → R,

by It,ω(ξ) = Vt+1(dω,t ) and where ξ(ω) = Vt+1(ω, h). Observe that It,ω is well
defined by dynamic consistency.

I now claim that It,ω is strictly monotone, normalized, and continuous. The
fact that It,ω is normalized follows by definition. Strict monotonicity follows from
dynamic consistency. To prove continuity, assume that ξn → ξ . Let hn and h satisfy
ξn = Vt+1(·, hn), ξ = Vt+1(·, h), and lim hn = h. For a contradiction, suppose that
It,ω(ξn) � It,ω(ξ). It follows that Vt+1(dnt,ω) � Vt+1(dt,ω). Hence, there exists ε > 0
such that, for every N ∈ N, there is an n ≥ N with

|Vt+1(dt,ω) − Vt+1(d
n
t,ω)| ≥ ε > 0.

By dynamic consistency it follows that there exists ε > 0 such that for every N ∈ N

|Vt
(
ht (ω), Vt+1(d

n
t,ω)

) − Vt
(
ht (ω), Vt+1(dt,ω)

) | ≥ ε > 0,

v for some n ≥ N . Observe that by continuity we have Vt (ω, hn) → Vt (ω, h). Hence,
we have arrived at a contradiction. Therefore It,ω(ξn) → It,ω(ξn) as desired.

Now assume that ht (ω) = h′
t (ω) and It,ω(Vt+1(·, h)) = It,ω(Vt+1(·, h′)). By

dynamic consistency, it follows that h ∼t,ω h′. Moreover, if It,ω(Vt+1(·, h)) >
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It,ω(Vt+1(·, h′)) then ht,ω �t,ω h′. By Lemma 1 in Gorman (1968) it follows that
there exists a continuous function Wt : X × Vt+1 → R strictly increasing in its
second argument such that

Vt (ω, h) = Wt
(
ht (ω), It,ω (Vt+1(·, h))

)
.

Finally observe that by stationarity it holds that Wt (x, y) = Wt ′(x, y) for every t, t ′,
x ∈ X and y ∈ Vmax{t,t ′}+1. Therefore, we can set W ≡ W0, which delivers the
representation.

I now turn to the necessity of the axioms. It is immediate possible to check that
the recursive representation satisfies axiom 3. To show that the representation satisfies
continuity, take h ∈ R and a sequence ( fn)n inR such that fn 
t,ω h and lim fn = f .
This means that Vt (ω, fn) ≥ Vt (h) for every n so that by sequential continuity of
Vt (ω, ·) we obtain that the set

{
f ∈ R : f 
t,ω h

}
,

is closed. Showing that the set

{
f ∈ R : h 
t,ω f

}
,

is closed can be done in the same way. Turn now to axiom 2. Let z ∈ X be such
that u(z) = 0 and W (x, u(z)) = u(x) (we know that such a z exists by assumption).
Now for every t ≤ t ′, ω, ω′, d ∈ D, y, ȳ, x, x̄ ∈ X it holds that Vt ′+1(xT−t ′) =
Vt+1((xT−t ′ , zt−t ′)). It follows that

Vt (ω, (d−t−1, y, xT−t ′ , zt−t ′)) = W (y, Vt+1(xT−t ′))

≥ Vt
(
ω, (d−t−1, ȳ, x̄ T−t ′ , zt−t ′)

) = W (ȳ, Vt+1(x̄ T−t ′))

⇐⇒ Vt ′(ω, (d−t ′−1, y, xT−t ′)) = W (y, Vt ′+1(xT−t ′))

≥ Vt ′
(
ω, (d−t ′−1, ȳ, x̄ T−t ′)

) = W (ȳ, Vt ′+1(x̄ T−t ′)),

which implies that axiom 2 is satisfied. Finally, take h, h′ ∈ R and (t, ω)with ht (ω) =
h′
t (ω). If h 
t+1,ω′ h′ for every ω′ ∈ Gt (ω) then Vt+1(ω

′, h) 
t+1,ω′ Vt+1(ω
′, h′)

which by monotonicity of It,ω implies It,ω(Vt+1(·, h)) ≥ It,ω(Vt+1(·, h′)). Since W
is strictly increasing in its second variable, it follows that Vt (ω, h) 
t,ω Vt (ω, h′)
as desired. Moreover, if for some ω′ ∈ Gt (ω) the inequality is strict, then by strict
monotonicity of It,ω we get It,ω(Vt+1(·, h)) > It,ω(Vt+1(·, h′)) as desired. ��

Proof of Proposition 2

Proof First observe that if W1 = W2, then

( ft (ω), dT−t ) 
i
t,ω ( ft (ω), ft+1, . . . , fT ) ⇐⇒ Vt+1(d) ≥ I it,ω(V i

t+1(·, f )), (8)
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Now if 
1
t,ω is more risk averse than 
2

t,ω then it is straightforward to check that
they rank prospects in D in the same way. It follows that they must admit recursive
representations (Wi , ui , (I it,ω)t,ω), i = 1, 2 such that u1 = u2 and W 1 = W 2. By
(8) it follows that I 1t,ω(ξ) ≤ I 2t,ω(ξ) for every ξ ∈ {ξ ∈ B0(Gt+1, Vt+1) : ξ =
Vt+1(·, f ), f ∈ R}. The converse follows immediately by (8). ��

Proof of Theorem 2

Proof of Proposition 2 First observe that preferences 
t,ω satisfy (6) by assumption
since they admit an EZ representation over R. The remainder of the proof uses argu-
ments from Selden and Stux (1978) (proof of Lemma 1). I prove sufficiency of the
axioms in the case of 
0, and using consequentialism the result follows for 
t,ω anal-
ogously. I claim that for every h ∈ F\R, there exists c̄ = (h0, c1, . . . , cT ) ∈ D such
that c̄ ∼0 h and

ct =
[
E∏t

τ=1 P(sτ )h
α
t

] 1
α

,

which establishes the representation since 
0 has an EZ representation so that

V0((h0, c1, . . . , cT ))) = u(h0) +
T∑

t=1

β j u(c j ),

where u(x) = xρ

ρ
, as desired. First, for every st−1 = (s1, . . . , st−1), let

c1t (s
t−1) = [

EP(st )h
α
t

] 1
α .

Observe that axioms 7 and 8, we have

h ∼0 (h0, . . . , hT−1, c
1
T ).

Now by further applying axioms 7 and 8 we get

(h0, . . . , hT−1, c
1
T ) ∼0 (h0, . . . , c

1
T−1, c

1
T ).

By axiom 6,

(h0, . . . , c
1
T−1, c

1
T ) ∼0 (h0, . . . , c

1
T−1, ĉ

1
T ),

where ĉ1T (s1, sT−2 . . . , ·, sT ) is constant and

ĉ1T (s1, . . . , ·) = c1(s1, . . . , ·).
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By another application of axioms 7 and 8 we obtain:

(h0, . . . , c
1
T−1, ĉ

1
T ) ∼0 (h0, . . . , c

1
T−1, c

2
T ),

where

c2T = [
EP(sT−1)P(sT )h

α
T

] 1
α .

Proceeding as in the previous to steps, we obtain at step t

h ∼0 (h0, . . . , c
1
T−t+1, . . . , c

t−1
T−1, c

t
T ),

where

ctj =
[
E∏ j

τ=T−t+1 P(sτ )
hα
j

] 1
α

.

Specifically, after T steps we get

h ∼0 (h0, c1, . . . , cT ),

as desired.
I turn to the necessity of the axioms. It is immediately verified that all axioms

are satisfied, except axiom 6. I prove that the representation satisfies indifference to
timing. Take h, h′ such that for some s̄t = (s̄1, . . . , s̄t ) with 1 ≤ t ≤ T − 2 the act

(h0, h1(s̄1), h2(s̄1, s̄2), . . . , ht (s̄
t ), . . . , hT (s̄t , ·)),

resolves earlier than

(h′
0, h

′
1(s̄1), h

′
2(s̄1, s̄2), . . . , h

′
t (s̄

t ), . . . , h′
T (s̄t , ·)),

and hτ (s1, . . . , sτ ) = h′
τ (s1, . . . sτ ) for every (s1, . . . , sτ ) with τ < t and

hτ (s1, . . . , sτ ) = h′
τ (s1, . . . sτ ) for every (s1, . . . sτ ) such that τ ≥ t and (s1, . . . , st ) �=

(s̄1, . . . , s̄t ). Then we have for t ′ ≤ t

Vt ′((s1, . . . , st ′), h) − Vt ′((s1, . . . , st ′), h
′) ∝

T−t∑

j=0

β j u

( [
E∏ j

τ=1 P(st+τ )
hα
t+ j

] 1
α

)

−
T−t∑

j=0

β j u

( [
E∏ j

τ=1 P(st+τ )
h′α
t+ j

] 1
α

)

.

Observe that by assumption on h, h′ we have

E∏ j
τ=1 P(st+τ )

hα
t+ j = E∏ j

τ=1 P(st+τ )
h′α
t+ j ,

for j = 0, . . . , T − t . Therefore Vt ′((s1, . . . , st ′), h) − Vt ′((s1, . . . , st ′), h′) = 0
whence the result follows. ��
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Calculations for Example 1

Given preferences 
t,ω which admit an EZSS representation (α, ρ, β,R) with
(α, ρ, β) = (0.819, 0.579, 1.193), when R = F we have that

π∗(h) = 1 − V̂ 0(h̄)

V̂ 0(h)
,

where

V̂ 0(h̄) =
(

1.193

(
1

2
·
((

1000.579 + 1.193 · 1700.579
) 1

0.579
)0.819

+1

2
·
((

1000.579 + 1.193 · 100.579
) 1

0.579
)0.819

) 0.579
0.819

⎞

⎠

1
0.579

,

V̂ 0(h) =
(

1.193

(
1

2
· (U2)

0.819 + 1

2
· (U2)

0.819
) 0.579

0.819
) 1

0.579

and

U2 =
(

1000.579 + 1.193 ·
(
1

2
· 1700.819 + 1

2
· 100.819

) 0.579
0.819

) 1
0.579

,

from which we obtain π∗(h) = −0.0418. In contrast, when R = I N D we have that

V̂ 0(h̄) =
(

1.193

((
1

2
· 1000.819 + 1

2
· 1000.819

) 1
0.819

+ 1.1932
(
1

2
· 1
2

· 1700.819 + 1

2
· 1
2

· 100.819

+ 1

2
· 1700.819 + 1

2
· 1
2

· 100.819
) 1

0.819
)0.579) 1

0.579

,

fromwhich we can find that π∗(h) = 0.347, so that π∗(h) ≈ 4%. Finally, ifR = GR,
then h, h̄ /∈ R and so by axiom 6 it follows that V̂ 0(h) = V̂ 0(h̄), implying π∗(h) = 0.

Calculations for Example 2

In this example, we consider a consumption-savings problem over three periods:
t = 0, 1, 2. The agent chooses a consumption plan (c0, c1, c2) and investment
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levels (n f , nr ) in a risk-free asset with return R f and a risky asset with stochas-
tic return Rr (st ), where t = 1, 2. The possible states occur with probabilities
P(H) = P(L) = 1

2 .
The agent maximizes expected utility:

max
c∈F

V0(c)

subject to the following budget constraints:

c0 = w − (n f + nr ) ≥ 0,

c1(s
1) = n f R f (s

1) + nr Rr (s
1) − (n f (s

1) + nr (s
1)) ≥ 0, s1 ∈ {H , L},

c2(s
2) = n f (s

1)R f (s
2) + nr (s

1)Rr (s
2) ≥ 0, s2 ∈ {(H , L), (H , H), (L, L), (L, H)}.

By symmetry, one can assume that nr (H) = nr (L). Note that if the agent does not
invest in the risky asset at the second-period nodes, the consumption plan corresponds
to an early resolution program, which falls outside the R = GR domain. Therefore,
under EZSS utility withR = GR, DOCE utility is used to determine optimal demands
when the second-period risky investment is zero. In all other cases, EZ utility is used.
The final step is to compare the maximum utility under the early resolution program
and the maximum utility under the EZ utility program.

In particular, the optimal utility under the assumption that second-period risky
investment is zero, i.e., nr (H) = nr (L) = 0, is 12.75. This value is achieved with the
investment levels:

nr (s0) = 7.94, n f (s0) = 0, n f (H) = n f (L) = 4.89.

In contrast, the unrestricted optimal utility under EZ preferences is 10.51, obtained
with:

nr (s0) = 0, n f (s0) = 4.02, nr (H) = nr (L) = 0.76, n f (H) = n f (L) = 1.66.

Hence, the optimal investment under the assumption R = GR is:

nr (s0) = 7.94, n f (s0) = 0, nr (H) = nr (L) = 0, n f (H) = n f (L) = 4.89.

Finally, when R = ∅, the maximum utility is 12.76, achieved with:

nr (s0) = 7.95, n f (s0) = 0, nr (H) = nr (L) = 4.89, n f (H) = n f (L) = 0.

These investment strategies result in the optimal consumption paths illustrated in
Fig. 4.
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