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A B S T R A C T

A major concern with Bayesian decision making under uncertainty is the use of a single probability measure
to quantify all relevant uncertainty. This paper studies prior robustness as a form of continuity of the value
of a decision problem. I show that this notion of robustness is characterized by a form of stable choice over
a sequence of perturbed decision problems, in which the available acts are perturbed in a precise fashion. I
then introduce a choice-based measure of prior robustness and apply it to models of climate mitigation and
portfolio choice.
1. Introduction

The last 30 years have seen an extensive development of non-
Bayesian theories of choice under uncertainty. Starting with the sem-
inal work of Schmeidler (1989) and Gilboa and Schmeidler (1989),
economists have developed models that depart from the standard sub-
jective expected utility model. The study of such departures is moti-
vated by different types of considerations.

For one, experimental evidence such as Ellsberg’s paradox has sug-
gested the Bayesian approach is not consistent with observed behavior.
A second type of concern finds the Bayesian approach to be inadequate
from a normative standpoint. As suggested by the literature on ambi-
guity and ambiguity aversion, a decision maker may find it challenging
to specify a unique probability when only vague or fragmentary infor-
mation is available.1 Analogous concerns have emerged in other fields
of economics.2

These concerns may be addressed by appealing to an informal
continuity principle: even if the probabilities are not correctly specified,
as long as the approximation error is small enough, then it should
cause only a small variation in the final conclusions. This is a form
of robustness to small specification errors of the original prior. For
example, a key question within the literature on economy-climate
models is to assess the robustness of the optimal policies to parameter
assumptions in the specification of the damage function or in the
temperature equation (e.g., see Ackerman et al. (2010)). In Bayesian

✩ This paper is a revised version of Chapter 4 of my dissertation at Northwestern University. I would like to thank two anonymous reviewers and the journal
editor for helpful remarks that significantly improved this paper. I also thank Eddie Dekel, Peter Klibanoff, Max Nendel, Frank Riedel, and Marciano Siniscalchi
for helpful discussions and suggestions.

E-mail address: lorenzomaria.stanca@unito.it.
1 See Gilboa and Marinacci (2016) for a review of the literature on ambiguity aversion.
2 A notable example is Hansen and Sargent’s work in macroeconomics. In a series of influential papers (e.g., Hansen and Sargent (2001)) they considered

decision makers who view their model (i.e., a probability distribution) as an approximation and want to behave robustly to possible perturbations of this
approximating model.

statistics, Kadane and Chuang (1978) formalize this idea by defining
robustness as continuity of the value of a Bayesian decision problem
under uncertainty.

In this paper, I provide a choice-theoretic foundation to this notion
of robustness, i.e. I connect robustness to observable choice behavior.

To illustrate, consider the perspective of an analyst who observes
choices over Savage acts made by an agent. The major difficulty with
relating this type of robustness to choice behavior is that the analyst
would have to be able to observe the agent’s choices in the counterfac-
tual scenario in which his belief is perturbed. This is not feasible in an
observational study. Even in an experimental setting, reliably inducing
perturbed beliefs may be challenging. Nonetheless, it is reasonable to
assume that the analyst can change or perturb the acts available to the
agent.

The approach I propose is to look at choice behavior over ‘‘per-
turbed’’ decision problems, i.e., decision problems in which the avail-
able acts are perturbed in a precise fashion. Following this reasoning,
I provide a behavioral axiom that consists in stable (or convergent)
choice behavior over a sequence of perturbed decision problems. The
main result, Theorem 2, states that robustness is characterized by this
form of stable choice. Therefore, one can think of robustness equiv-
alently as a form of robust choice behavior over perturbed decision
problems.

I then study how to quantify prior robustness by constructing a
measure drawing from methods in functional differentiation. For an
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agent with utility 𝑢, prior 𝑃 and optimal act 𝑓 ∗ robustness is quantified
by

sup
𝑄∈𝐶 ∫ 𝑢(𝑓 ∗)𝑑𝑄 − ∫ 𝑢(𝑓 ∗)𝑑𝑃 , (1)

where 𝐶 is a set of probability measures that represent perturba-
tions to the prior 𝑃 . The second main set of results, Theorem 3 and
Proposition 2, provides a foundation for such a measure.

This measure can be used to address two different types of ques-
tions. First, it can be used to assess how sensitive the predictions of a
model are to the choice of the initial probability. For instance, it can
be applied to Bayesian statistical methods to compare the robustness of
different priors.

From a decision-theoretic perspective, this measure can be used to
compare attitudes toward robustness for different agents. Consider two
agents with the same utility but different beliefs. Proposition 2 shows
that an agent is associated with a lower measure of robustness than
another agent if and only if the monetary value he attaches to having
his optimal act perturbed is lower than that of the other agent. In other
words, a ‘‘more robust’’ agent will be less affected by perturbations of
the optimal act.

I provide two applications to illustrate the importance of this mea-
sure of robustness: a climate mitigation problem and a portfolio choice
problem.

An extensive literature (e.g., see Weitzman (2011) or Ibragimov
et al. (2015)) has suggested that adopting ‘‘fat’’ or ‘‘heavy’’ tailed
distributions is a way to build models with more robust conclusions.
For example, fat tailed distributions such as the Student’s 𝑡-distribution
are typically considered a robust alternative to the use of normal
distributions. I consider a simple climate mitigation model, where an
agent has to choose the consumption of a good that can produce (an
uncertain) damage in the future. A desire for robustness may emerge
from experts’ disagreement about the distribution of future damage.3
I show that the measure of robustness I develop ranks as more robust
distributions with heavier tails. One way to interpret this result is that
with heavier tails, social utility will be less volatile to misspecification
of the prior probability.

Further, in a simple portfolio allocation problem, I show that if the
utility function incorporates explicitly a distaste for fat tails, modeling
returns of a risky asset with a Student’s 𝑡-distribution is more robust
than it is with a normal distribution. Hence, this measure of robustness
formalizes the intuition in the literature that connects heavy tailed
distributions with robustness. As I discuss, heavy tails can be seen as
emerging from model uncertainty, thus showing – against the common
claim in the decision-theoretic literature – that the Bayesian approach
can be properly used to deal with model uncertainty.

Related literature. Modeling robustness in a Bayesian framework is
an old topic of interest. For instance, Savage et al. (1963) introduce
the so called principle of ‘‘stable estimation’’. In a Bayesian statistical
problem, they propose conditions such that the likelihood function
dominates the prior distribution. Thus, robustness is modeled by the
fact that the prior does not have a strong influence on the poste-
rior. Fishburn et al. (1968) describe a variety of methods that may be
used to evaluate the robustness of probabilities. The main approach
they consider is to evaluate how much a probability that guarantees
a unique optimal solution has to be perturbed to change the optimum.
An extension of their work is given by Pierce and Folks (1969). Demp-
ster (1975) contains a very interesting discussion of conceptual issues
related to robustness from a subjectivist perspective.

3 In the case of climate change, there is substantial disagreement among
xperts on the parameter of climate sensitivity, i.e., by how much global
verage temperatures increase as a result of increased greenhouse gas levels.
ee Meinshausen et al. (2009).
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In game theory, it is well known that game-theoretic predictions
can be highly sensitive to assumptions about players’ higher-order
beliefs. Rubinstein’s (1989) seminal paper shows that a strict Nash
equilibrium of a game might fail to be rationalizable under a slight
perturbation of hierarchies of beliefs. This paper spawned a large
literature that tried to establish whether in some cases robustness can
be preserved. From a theoretical perspective, this literature is close to
my approach since it studies robustness of game-theoretic predictions
with respect to a fixed topology. It is important to note that one
could adopt an alternative approach suggested by Dekel et al. (2006)
which constructs the coarsest metric topology that preserves a form of
robustness.

This paper is inspired by several works in the literature in statistics.
Good’s writings on robustness (see for example Good, 1971) had a large
impact on the literature in Bayesian statistics. Some of his insights
were eventually developed in the literature on Bayesian robustness
(see Berger et al. (2000) for a review). This literature studies how much
Bayesian statistical methods depend on uncertainty about the precise
details of the analysis, typically those given by the prior distribution.
The main notion of robustness in this paper is inspired by this literature,
and in particular by the work of Kadane and Chuang (1978).

This paper is also related to the frequentist literature on robustness
that started with the seminal work of Huber et al. (1964). In particular,
there are tight connections with the work of Hampel (1971, 1974). The
main differences between my work and the literature in statistics is that
I adopt a choice-theoretic approach.

Structure. Section 2 introduces the formal decision-theoretic frame-
work. Section 3 introduces the notion of robustness, along with its
behavioral characterization. Section 4 studies how to quantify the
robustness for a given decision problem. Section 5 studies applications,
and Section 6 offers concluding remarks. The proofs are in Appendix.

2. Preliminaries

Choice setting. I adopt the standard decision theoretic set-up à la
Savage with additional assumptions on the state space and the set of
consequences. The set 𝑆 represents the states of the world and 𝛴 =
{𝐴,𝐸,…} is a 𝜎-algebra of subsets of 𝑆 called events. 𝑋 = {𝑥, 𝑦, 𝑧,…}
s the set of consequences. Assume 𝑋 is a Euclidean space, i.e. 𝑋 = R𝑛,
nd denote with ‖ ⋅ ‖ the standard Euclidean norm. 𝐶𝑏(𝑆,𝑋) ⊆ 𝑋𝑆

enotes the set of continuous and bounded functions. For example, if
= [0, 1] then 𝐶𝑏([0, 1],R) ≡ 𝐶([0, 1]) is the set of continuous real

alued functions defined on the interval [0, 1].,
I assume 𝑆 is a Polish space and that 𝛴 is the Borel 𝜎-algebra. 𝛥

denotes the set of countably additive probability measures 𝜇 ∶ 𝛴 →

[0, 1]. Call 𝜇 ∈ 𝛥 non-atomic if for every 𝐴 ∈ 𝛴 there is 𝐵 ∈ 𝛴
such that 𝐵 ⊆ 𝐴 and 𝜇(𝐴) > 𝜇(𝐵) > 0. With 𝑐𝑎(𝛴) I denote the set
of all countably additive signed measures defined on 𝛴. By standard
results (see Dunford and Schwartz (1958)) since 𝑆 is a Polish space,
𝑐𝑎(𝛴) is isometrically isomorphic to the dual space of 𝐶𝑏(𝑆,R). One
can therefore consider the duality pairing ⟨⋅, ⋅⟩ ∶ 𝑐𝑎(𝛴) × 𝐶𝑏(𝑆,R) → R

given by ⟨𝑃 , 𝜙⟩ = ∫ 𝜙𝑑𝑃 .
Given a sequence (𝑃𝑛)𝑛 in 𝛥, 𝑃𝑛

∗
→ 𝑃 denotes convergence in the

weak∗ topology, that is

lim
𝑛→∞

⟨𝑃𝑛, 𝜙⟩ = ⟨𝑃 , 𝜙⟩, for all 𝜙 ∈ 𝐶𝑏(𝑆,R).

I denote with  = {𝑓, 𝑔, ℎ…} ⊆ 𝑋𝑆 the set of acts. As usual, for
𝑥 ∈ 𝑋, I define 𝑥 ∈  to be the constant act such that 𝑥(𝑠) = 𝑥 for all
𝑠 ∈ 𝑆. For any 𝑓, 𝑔 ∈  and event 𝐴 ∈ 𝛴 denote with 𝑓𝐴𝑔 the act
ℎ such that ℎ(𝑠) = 𝑓 (𝑠) for 𝑠 ∈ 𝐴 and ℎ(𝑠) = 𝑔(𝑠) for 𝑠 ∉ 𝐴. A simple
act is an act with finite support. Because 𝑋 is a normed vector space,
any simple act 𝑓 can be written as 𝑓 =

∑𝑛
𝑖=1 1𝐴𝑖

𝑥𝑖, where 1𝐴𝑖
is the

ndicator function of the set 𝐴𝑖, (𝐴𝑖)𝑛𝑖=1 is a 𝛴-measurable partition of

and 𝑥1,… , 𝑥𝑛 are the elements of the range of 𝑓 .
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The starting point of the analysis is a binary relation ≽ on the set
that represents a decision maker’s (DM) preferences over acts. Given

cts 𝑓, 𝑔 I write 𝑓 ⩾ 𝑔 if 𝑓 (𝑠) ≽ 𝑔(𝑠) for every 𝑠 ∈ 𝑆. An act 𝑓 ∈  is
measurable if {𝑠 ∈ 𝑆 ∶ 𝑓 (𝑠) ≽ 𝑥} ∈ 𝛴 and {𝑠 ∈ 𝑆 ∶ 𝑥 ≽ 𝑓 (𝑠)} ∈ 𝛴 for
every 𝑥 ∈ 𝑋. I restrict attention to bounded and measurable acts. In
other words,

 = {𝑓 ∈ 𝑋𝑆 ∶ 𝑓 is measurable and 𝑦 ⩽ 𝑓 ⩽ 𝑥 for some 𝑥, 𝑦 ∈ 𝑋}.

A functional 𝑉 ∶  → R represents ≽ if

𝑉 (𝑓 ) ≥ 𝑉 (𝑔) ⟺ 𝑓 ≽ 𝑔,

for every 𝑓, 𝑔 ∈  .
For 𝑔 ∶ 𝑆 → R and a measure 𝜇 such that 𝑔 is 𝜇-integrable, let

∫ 𝑔𝑑𝜇,

denote the standard Lebesgue integral with respect to 𝜇. If 𝜈, 𝜇 are
two measures then ∫ 𝑔𝑑(𝜇 + 𝜈) denotes the integral with respect to the
measure 𝐴 ↦ 𝜇(𝐴) + 𝜈(𝐴) for all 𝐴 ∈ 𝛴.

Given a measurable space (𝛺,), 𝛥(𝛺) denotes the set of all count-
ably additive probability measures defined on . Given 𝑃 ,𝑄 ∈ 𝛥(𝛺), I
write 𝑄 ≪ 𝑃 if and only if 𝐴 ∈ , 𝑃 (𝐴) = 0 ⟹ 𝑄(𝐴) = 0. In some
examples and applications, the integral of a function 𝑔 ∶ 𝛺 → R with
respect to a probability measure 𝜇 will be denoted by E𝜇𝑔(𝜔).

2.1. Basic preference representation

The DM’s preference relation ≽ over  is assumed to be represented
by 𝑉 ∶  → R satisfying

𝑉 (𝑓 ) = ∫ 𝑢(𝑓 )𝑑𝑃 ∀𝑓 ∈  , (2)

where 𝑃 ∈ 𝛥 is non-atomic and 𝑢 ∶ 𝑋 → R is continuous. One could
provide a foundation for this criterion by means of Kopylov’s (2010)
characterization of Savage’s subjective expected utility with countably
additive probabilities, with the addition of a standard continuity axiom.

3. Robustness

Decision problems and robustness. A decision problem is a (non-
empty) set 𝐹 ⊆  of acts. Acts in 𝐹 are the available acts that the DM
can choose. Since ≽ satisfies Savage’s axioms, the DM faces the usual
optimization problem

sup
𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃 . (3)

Many economic models involve an optimization problem like (3). I will
consider two main examples.

Example 1 (Portfolio Choice). In the standard portfolio choice problem,
there are two assets available: a risk free one with certain return 𝑟𝑓
and a risky one with uncertain return described by the random variable
𝑟 ∶ 𝛺 → R defined on a measurable space (𝛺,). The investor has to
allocate his wealth (which I normalize to 1) between the two assets. He
cares about his terminal wealth 𝑤 ∈ R and has utility 𝑣(𝑤). The set of
available acts can be written as

𝐴 = {𝑎𝑟 + (1 − 𝑎)𝑟𝑓 ∶ 𝑎 ∈ [0, 1]},

where 𝑎 denotes the fraction of wealth invested in the risky asset. The
problem faced by the investor is

max
𝑟′∈𝐴

E𝑝𝑣(𝑟′(𝜔)).

where 𝑝 ∈ 𝛥(𝛺). Thus here we have 𝑋 = R, 𝑆 = 𝛺, 𝑢 = 𝑣, 𝑃 = 𝑝 and
96

𝐹 = 𝐴.
Example 2 (Climate Mitigation). Consider a simple economic model of
climate mitigation analogous to that studied in Gollier et al. (2000)
(see also Bommier et al. (2021)). There are two periods where the only
source of utility comes from the consumption of a good 𝑐𝑡 at 𝑡 = 1, 2.
Consuming the good at 𝑡 = 1 is free and certain but it may reduce the
(uncertain) value of consumption at time 𝑡 = 2 through environmental
damage. More formally, the decision maker has to choose the level of
climate abatement 𝑎 ∈ R+, which will result in reduced consumption
at 𝑡 = 1, i.e. 𝑐1(𝑎) = 𝑐 − 𝑟(𝑎), where 𝑟 ∶ R+ → R is a function that
describes the cost of the abatement policy. At the same time, a higher
level of abatement policy will (potentially) increase the future level of
consumption 𝑐2(𝑎, 𝑠) depending on the realization of a state 𝑠 ∈ R. The
optimization problem is therefore given by:

𝑉 (𝑃 ) = max
𝑎∈R+

𝑣 (𝑐 − 𝑟(𝑎)) + 𝛽E𝑃 𝑣
(

𝑐2(𝑎, ⋅)
)

,

where 𝛽 ∈ (0, 1] reflects time preference and 𝑃 ∈ 𝛥(R) is the decision
maker belief about the state 𝑠 ∈ 𝑆. The set of available acts can be
written as

𝐴 = {(𝑥1, 𝑥2) ∶ 𝑆 → R2 ∶ 𝑥1 = 𝑤1 − 𝑐(𝑎), 𝑥2 = 𝑐2(𝑎, ⋅), 𝑎 ∈ R+}.

As the previous examples illustrate, it is common to make reg-
ularity assumptions on the set of feasible acts. To study robustness
from a choice-theoretic perspective, I am going to make the following
assumptions on 𝐹 .

Assumption 1 (Continuous Acts). 𝐹 ⊆ 𝐶𝑏(𝑆,𝑋)

Assumption 2 (Optimal Act). There exists 𝑓 ∗ ∈ 𝐹 such that 𝑓 ∗ ≽ 𝑓 for
every 𝑓 ∈ 𝐹 .

A few comments are in order. Assumption 1 is a standard regularity
assumption. While this assumption excludes simple acts, the latter can
be arbitrarily approximated by the former.4

Using continuous acts substantially eases the exposition; however,
it is possible to allow for non-continuous acts. Further, this assumption
guarantees that we can endow 𝐹 with the sup-norm topology, i.e., the
distance defined by

‖𝑓 − 𝑔 ∥∞= sup
𝑠∈𝑆

‖𝑓 (𝑠) − 𝑔(𝑠)‖.

Assumption 2 simply states that the optimization problem is ‘‘interest-
ing’’ in the sense that it admits a solution.

Two notions of robustness are studied in this paper, which are
adaptions to the present setting of Kadane and Chuang’s (1978) notions
of stability (see also Salinetti (1994)). The first is a form of continuity
of the value of the decision problem as a function of the DM’s belief.

Definition 1. Fix a decision problem 𝐹 and consider the preference ≽
with representation (𝑢, 𝑃 ). Say that ≽ is robust with respect to 𝐹 if for
every sequence (𝑃𝑛)∞𝑛=1 in 𝛥 such that 𝑃𝑛

∗
→ 𝑃 it holds

sup
𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃𝑛 → max

𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃 ,

as 𝑛 → ∞.5

4 Formally, this fact is known as Lusin’s Theorem; see for example Theorem
2.8 in Aliprantis and Border (2006).

5 It is important to observe that since for some 𝑥 it holds 𝑥 ⩾ 𝑓 ∗, we obtain
⩾ 𝑓 for every 𝑓 ∈ 𝐹 . This implies that

sup
∈𝐹 ∫

𝑢(𝑓 )𝑑𝑃𝑛 ≤ 𝑢(𝑥) < ∞,

for every 𝑛. Thus the sequence (sup𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃𝑛)∞𝑛=1 is effectively a sequence

in R.
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Observe Robustness does not depend on the normalization of the
Bernoulli utility 𝑢. It follows that robustness is a property of the
reference ≽ which holds or does not hold for every expected utility

representation. The next example provides a case in which robustness
is not satisfied.

Example 3. Suppose that 𝛺 = R endowed with the Borel 𝜎-algebra.
Assume that 𝑋 = R, 𝑢(𝑥) = −𝑥2 for every 𝑥 ∈ R, and

𝐹 = {𝑓 ∶ R → R ∶ 𝑓 (𝜔) = 𝑎 − 𝜔 for some 𝑎 ∈ R}.

Further assume that 𝑃 is such that ∫ 𝜔𝑑𝑃 < ∞ and ∫ 𝜔2𝑑𝑃 < ∞. Under
hese assumptions, this decision problem has finite value.

For any positive integer 𝑛, let 𝑃𝑛 denote perturbation of the original
elief 𝑃 given by 𝑃𝑛 = (1− 1

𝑛 )𝜇+
1
𝑛 𝛿𝑛2 , where 𝛿𝑛2 denotes the degenerate

distribution that assigns probability one to 𝑛2. Note that the sequence
of distribution functions of (𝑃𝑛)𝑛 converges pointwise to that of 𝑃 . It
ollows that 𝑃𝑛

∗
→ 𝑃 .

Now observe that the act 𝑓 ∗
𝑛 that maximizes ∫ 𝑢(𝑓 )𝑑𝑃𝑛 satisfies for

every 𝜔 ∈ 𝛺

𝑓 ∗
𝑛 (𝜔) + 𝜔 = ∫ 𝜔𝑑𝑃𝑛 =

(

1 − 1
𝑛

)

∫ 𝜔𝑑𝑃 + 1
𝑛
𝑛2 =

(

1 − 1
𝑛

)

∫ 𝜔𝑑𝑃 + 𝑛,

so that 𝑓𝑛(𝜔) → ∞ for every 𝜔 ∈ 𝛺. It follows that sup𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃𝑛 →

−∞. In words, a very small perturbation of the initial belief leads the
agent to extremely different conclusions.

The main reason I consider robustness with respect to the weak∗
topology is that it is a natural topology to consider for an initial
analysis. Indeed, as the name suggests, it is weaker than most other
topologies on probability measures that are typically considered. As
a consequence, this notion of robustness will be very demanding.
In particular, it will be more demanding than any other notion of
robustness that uses a topology stronger than the weak∗.

An important feature of this notion of robustness is that it depends
not only on the prior probability but also on the choice set 𝐹 and
the utility 𝑢. As will be shown in the main theorem of this section,
robustness is characterized by a form of robust choice behavior over
sequences of perturbed decision problems.

Therefore, since more regular decision problems are harder to per-
turb, regularity properties of the decision problem will be important to
guarantee robustness. For example, a key property related to robustness
is the compactness of the choice set 𝐹 .

Example 4 (Portfolio Choice Continued). Suppose that 𝛺 is a metric
space and 𝑟 ∶ 𝛺 → R is a continuous bounded function. For example,
𝛺 = [0, 1], 𝑟(𝜔) = 𝜔 and 𝑃 has a beta distribution (so that 𝑟 is also
distributed as a beta). Then it is easy to show that the set

𝐴 = {𝑎𝑟 + (1 − 𝑎)𝑟𝑓 ∶ 𝑎 ∈ [0, 1]} ⊆ 𝐶([0, 1]),

is a compact subset of 𝐶([0, 1]) in the sup-norm topology by a direct
pplication of the Arzelà–Ascoli theorem. Suppose that 𝑣 ∶ R → R is
ontinuous. Given the structure of the feasible set 𝐴, it is possible to
how that the objective function is continuous in both the probability
nd the choice variable.

Thus, by the maximum theorem (see for example p. 306 in Ok
2011)) robustness is satisfied. On the other hand, in general strong
obustness will not be satisfied unless there is a unique optimal solu-
ion. For the general decision problem in (3), the following result holds.

roposition 1. Suppose that 𝐹 is a compact subset of 𝐶𝑏(𝑆,𝑋). Then
obustness is satisfied. Moreover, strong robustness is satisfied whenever
here is a unique optimal act.

roof. See Appendix. □
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Observe that the previous result does not rely on the maximum
heorem. This is due to the fact that the objective function need not
e jointly continuous in both its arguments. However, part of the proof
f Theorem 2 can be used to show that in this example robustness is
atisfied. The full proof is elaborated in Appendix.

In general, for a decision problem 𝐹 ′ ⊆  , any constant 𝜀 > 0
nd any expected utility representation (𝑢, 𝑃 ) of preferences, we will
e interested in the set of all 𝜀-optimal acts

ax
𝑢,𝑃 ,𝜀

(𝐹 ′) =
{

𝑓 ∈ 𝐹 ′ ∶ ∫ 𝑢(𝑓 )𝑑𝑃 ≥ sup
𝑔∈𝐹 ′ ∫

𝑢(𝑔)𝑑𝑃 − 𝜀
}

,

hile the set of optimal acts is denoted with max𝑢,𝑃 (𝐹 ′).6
The second notion of robustness I look at requires a form of conti-

uity of the optimal solution.

efinition 2. Fix a decision problem 𝐹 and consider the preference
with representation (𝑢, 𝑃 ). Say that ≽ is strongly robust with respect

o 𝐹 if for every sequence (𝑃𝑛)∞𝑛=1 in 𝛥 such that 𝑃𝑛
∗
→ 𝑃 and for every

equence of positive numbers (𝜀𝑛)∞𝑛=1 such that 𝜀𝑛 → 0, every sequence
f acts (𝑓𝑛)∞𝑛=1 that satisfies 𝑓𝑛 ∈ max𝑢,𝑃𝑛 ,𝜀𝑛 (𝐹 ) converges to an optimal
ct 𝑓 ∗ ∈ max𝑢,𝑃 (𝐹 ).

emark 1. Strong robustness is indeed stronger than robustness. See
heorem 4 in Appendix.

.1. Perturbed decision problems

The main question that I study is whether it is possible to obtain
behavioral characterization of these two notions of robustness. The

hallenge with this question is that it requires observing the choices
ade by the DM under alternative beliefs. Unfortunately, in many

ettings such a counterfactual is not available. The main idea that I
ropose is that one can look at the behavior of the DM when the
ecision problem itself is ‘‘perturbed’’ in a precise fashion.

Given an act 𝑓 , I will consider ‘‘perturbations’’ of the kind 𝑓𝐸𝑥
or some event 𝐸 ∈ 𝛴 and outcome 𝑥 ∈ 𝑋. More precisely, given a
equence (𝑃𝑛)∞𝑛=1 such that 𝑃𝑛

∗
→ 𝑃 , consider the decision problem 𝐹𝑛

efined by

𝑛 =
{

𝑓𝐸𝑥 ∶ 𝑓 ∈ 𝐹 ,𝐸 ∈ 𝛴, 𝑥 ∈ 𝑋,∫ 𝑢(𝑓𝐸𝑥)𝑑𝑃 = ∫ 𝑢(𝑓 )𝑑𝑃𝑛

}

.

𝑛 contains all the perturbations of the acts in 𝐹 that have expected
tility ‘‘as if’’ the agent’s belief was 𝑃𝑛. Because the sets (𝐹𝑛)𝑛 con-
ain perturbations of the acts in 𝐹 , they will not necessarily satisfy
ssumptions 1 and 2.7

The first result describes an important class of such perturbations
nd, in particular, shows that 𝐹𝑛 ≠ ∅ for every 𝑛.

heorem 1. Let 𝐹 be a decision problem and
(

𝑃𝑛
)

𝑛 a sequence such that

𝑛
∗
→ 𝑃 . For every 𝑓 ∈ 𝐹 , there exist 𝐴𝑓,𝑛 and 𝑥𝑓,𝑛 such that

𝑢(𝑓𝐴𝑓,𝑛𝑥𝑓,𝑛)𝑑𝑃 = ∫ 𝑢(𝑓 )𝑑𝑃𝑛 ∀𝑛.

Moreover, 𝑃 (𝐴𝑓,𝑛) → 1 and either 𝑥𝑓,𝑛 = 𝑥𝑓 or 𝑥𝑓,𝑛 = 𝑦𝑓 , where
𝑥𝑓 ⩾ 𝑓 ⩾ 𝑦𝑓 .

Proof. See Appendix. □

6 Observe that the set max𝑢,𝑃 ,𝜀(𝐹 ′) is non-empty for every 𝜀 > 0. Indeed,
ecause sup𝑔∈𝐹 ′ ∫ 𝑢(𝑔)𝑑𝑃 < ∞, there exists a sequence (𝑓𝑛)𝑛 in 𝐹 ′ such that
im ∫ 𝑢(𝑓𝑛)𝑑𝑃 = sup𝑔∈𝐹 ′ ∫ 𝑢(𝑔)𝑑𝑃 .

7 Because an act 𝑔 ∈ 𝐹𝑛 will have the form 𝑔 = 𝑓𝐸𝑥, in general it will not
satisfy continuity, that is 𝑔 ∉ 𝐶 (𝑆,𝑋).
𝑏
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Thus, not only are the sets 𝐹𝑛 non-empty but for each 𝑓 ∈ 𝐹 there
is some 𝑓𝐸𝑥 ∈ 𝐹𝑛 that, for large 𝑛, is ‘‘close’’ to the act 𝑓 . Indeed, it is
easy to show that

∫ ‖𝑓𝐴𝑓,𝑛𝑥𝑓,𝑛 − 𝑓‖𝑑𝑃 → 0 as 𝑛 → ∞.

In this sense, the perturbed act 𝑓𝐴𝑓,𝑛𝑥𝑓,𝑛 can be considered a small
alteration of the act 𝑓 for large 𝑛.

Thanks to this result, it is possible to understand the choice behavior
of the DM in the counterfactual scenario in which he had a different
belief. Thus, given any 𝑃𝑛

∗
→ 𝑃 , it is possible to understand the DM’s

behavior as if his belief was 𝑃𝑛 by looking at choices over the set 𝐹𝑛.
The next key property captures the idea of stable (or convergent)

choice over the sequence of perturbed decision problems (𝐹𝑛)∞𝑛=1.

Definition 3. Consider ≽ with representation (𝑢, 𝑃 ) and a decision
problem 𝐹 ⊆  . Let 𝜀𝑛 → 0. A sequence (𝑔𝑛)∞𝑛=1 = (𝑓𝑛𝐸𝑛𝑥𝑛)∞𝑛=1 ∈
∏∞

𝑛=1 max𝑢,𝑃 ,𝜀𝑛 (𝐹𝑛) is stable for the optimal act 𝑓 ∗ ∈ max𝑢,𝑃 (𝐹 ) if the
following two conditions hold:

(i) There is a subsequence (𝑓𝑛𝑘 )𝑘 of (𝑓𝑛)∞𝑛=1 such that 𝑓𝑛𝑘 → 𝑓 ∗;
(ii) ∫ ‖𝑔𝑛𝑘 − 𝑓 ∗

‖𝑑𝑃 → 0.

Stability requires a strong type of convergence for the sequence

(𝑔𝑛𝑘 )𝑘 = (𝑓𝑛𝑘𝐸𝑛𝑘𝑥𝑛𝑘 )𝑘.

First, the sequence of acts (𝑓𝑛𝑘 )𝑘 that are perturbed has to convergence
to an optimal act 𝑓 ∗ according to the sup-norm metric. Moreover, the
sequence (𝑔𝑛𝑘 )𝑘 = (𝑓𝑛𝑘𝐸𝑛𝑘𝑥𝑛𝑘 )𝑘 has to converge to the optimal act 𝑓 ∗.

To have intuition for condition (ii), note it requires the usual con-
vergence in mean of the sequence (𝑔𝑛𝑘 )𝑘 to 𝑓 ∗. Thus, choice behavior is
stable in the sense that choices for the perturbed decision problems are
similar to some choices potentially observed in the original problem.

The main axiom of this paper requires stable behavior over se-
quences of perturbed decision problems.

Axiom (Preference for Stability). Consider ≽ with representation (𝑢, 𝑃 ).
Fix a decision problem 𝐹 ⊆  . Say that ≽ has a preference for stability
with respect to 𝐹 if for every 𝑃𝑛

∗
→ 𝑃 there exists 𝜀𝑛 → 0 and a stable

equence (𝑔𝑛)∞𝑛=1 = (𝑓𝑛𝐸𝑛𝑥𝑛)∞𝑛=1 ∈ max𝑢,𝑃 ,𝜀𝑛 (𝐹𝑛) for some optimal act 𝑓 ∗.

In words, preference for stability requires stable choice behavior
ver any sequence of perturbed decision problems. The main result of
he paper characterizes robustness in terms of preference for stability.

heorem 2. ≽ is robust with respect to 𝐹 if and only if it has preference
or stability with respect to 𝐹 .

roof. See Appendix. □

As a corollary, an analogous characterization can be obtained for
trong robustness.

orollary 1. ≽ is strongly robust if and only if for 𝜀𝑛 → 0 and every
equence (𝑓𝑛)∞𝑛=1 such that 𝑓𝑛 ∈ max𝑢,𝑃𝑛 ,𝜀𝑛 (𝐹 ) there exists a sequence
𝑔𝑛)∞𝑛=1 = (𝑓𝑛𝐸𝑛𝑥𝑛)∞𝑛=1 such that 𝑔𝑛 ∈ max𝑢,𝑃 ,𝜀𝑛 (𝐹𝑛) and for a subsequence
(𝑔𝑛𝑘 )

∞
𝑘=1 satisfies

∫ ‖𝑔𝑛𝑘 − 𝑓 ∗
‖𝑑𝑃 → 0.

Conceptually, these two results connect the notions in Definition 1
to a property of choice that is potentially testable. Clearly, an axiom
involving convergence of choices is not directly ‘‘operational’’, since it
involves an infinite sequence of acts.

Nonetheless, these results do suggest that attitudes toward robust-
ness are related to convergence of choices under small perturbations
of the available acts. The fact that the axiom involves convergence
98

of a sequence of acts does not necessarily preclude testability. For
instance, the experimental literature that studies learning in games
(e.g., Hyndman et al. (2012)) has studied convergence of actions in
situations of repeated interaction.

Typically, convergence is assumed whenever the same type of
choice is repeatedly observed over a period of time. Therefore, one
could understand whether robustness fails by looking at whether or
not choices over a sequence of perturbed decision problems converge
to the choice for the original problem. To clarify this point, consider
the following example.

Example 5. Consider the following special case of Example 1. Here
𝛺 = [0, 1], 𝑃 is the Lebesgue measure, and 𝑢(𝑥) = log(𝑥). Assume
hat the riskless asset pays 1

3 for sure. Given these assumptions, the
optimal allocation of wealth is to allocate 𝛼 ≈ 71.63% of wealth to the
risky asset. Consider the perturbation of the prior 𝑃 given by 𝑃𝑛 =
1
𝑛 𝛿1 + (1 − 1

𝑛 )𝑃 , where 𝛿1 is the distribution such that 𝛿1({1}) = 1. In
ords, this sequence of perturbations takes into account the possibility

hat the risky asset might involve no risk and pays 1 for sure. For every
llocation of wealth 𝛼, it is possible to find a perturbation 𝑟𝑛 of the risky
sset given by 𝑟𝑛(𝜔) = 𝜔𝐸𝑛1, where 𝐸𝑛 = [0, 𝑥𝑛(𝛼)] ⊆ 𝛺 and 𝑥𝑛(𝛼) → 1
s 𝑛 → ∞ such that8

𝑃 log
(

𝛼𝜔𝐸𝑛1 + (1 − 𝑎) 1
3

)

= E𝑃𝑛 log
(

𝛼𝜔 + (1 − 𝑎) 1
3

)

.

Therefore, for every 𝑛 we can consider the perturbed decision problems

max
𝛼∈[0,1]

E𝑃 log
(

𝛼𝜔𝐸𝑛1 + (1 − 𝑎) 1
3

)

. (4)

In these decision problems, the risky asset has an uncertain outcome
for 𝜔 ∈ 𝐸𝑛 (where 𝐸𝑛 is close to 𝛺 for large 𝑛) and pays 1 for
sure otherwise. A failure of preference for stability would consist in
observing choices of the allocation of wealth 𝛼 for the problem (4) that
for ‘‘large’’ 𝑛 are very different from 71.63%.

4. A quantitative measure of robustness

This section develops a quantitative measure of robustness. Quan-
tifying robustness is interesting for two main reasons. First, one may
want to quantify the sensitivity of the predictions of a model to the
choice of prior. Moreover, one may be interested in comparing atti-
tudes toward robustness for different agents from a decision theoretic
perspective. The measure is inspired by the concept of the influence
function, which was developed by Hampel (1971, 1974) in the context
of robust (frequentist) statistics.

Robustness will be measured with respect to some class of pertur-
bations 𝐶 ⊆ 𝛥 of probability measures such that 𝑃 ∈ 𝐶. This set can be
interpreted as a set of perturbations considered plausible by the DM.
At the end of this section, I offer a few possible specifications for the
set 𝐶.

Define the map 𝑊 ∶ 𝛥 → R by

(𝜇) = sup
𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝜇 for every 𝜇 ∈ 𝛥.

iven 𝑄 ∈ 𝐶, consider the affine directional derivative of 𝑊 at 𝑃 ∈ 𝛥
n the direction 𝑄

𝑄𝑊 (𝑃 ) = lim
ℎ↓0

𝑊 (ℎ𝑄 + (1 − ℎ)𝑃 ) −𝑊 (𝑃 )
ℎ

.

The affine directional derivative is equivalent to a standard directional
derivative in the direction 𝑄−𝑃 at the point 𝑃 . It is an intuitive way to

8 To see this, note that E𝑃 log
(

𝛼𝜔𝐸𝑛1 + (1 − 𝑎)
)

= ∫ 1
𝑥𝑛
log

(𝛼𝜔 + (1 − 𝛼) 1
3
)𝑑𝜔 + (1 − 𝑥𝑛) log

(

𝛼 + (1 − 𝛼) 1
3

)

and E𝑃𝑛
log(𝛼𝜔 + (1 − 𝑎)) =

(1 − 1
𝑛
) ∫ 1

0 log
(

𝛼𝜔 + (1 − 𝛼) 1
3

)

+ ( 1
𝑛
) log

(

𝛼 + (1 − 𝛼) 1
3

)

. Thus, one can pick 𝑥𝑛
with 𝑥 → 1 so that the equality holds.
𝑛
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describe how the value changes when the prior 𝑃 is perturbed by the
probability 𝑄.9

The main result of this section is an envelope theorem that gives an
xplicit formula for the directional derivative 𝑑𝑄𝑊 (𝑃 ). Furthermore, it

also provides a connection between robustness and differentiation of
𝑊 .

Theorem 3. Consider ≽ with representation (𝑢, 𝑃 ) and a decision problem
𝐹 ⊆  such that robustness is satisfied and there is a unique optimal act
𝑓 ∗. Suppose that 𝑋 is a Euclidean space. Then it holds that

𝑑𝑄𝑊 (𝑃 ) = ∫ 𝑢(𝑓 ∗)𝑑𝑄 − ∫ 𝑢(𝑓 ∗)𝑑𝑃 .

Proof. See Appendix. □

Therefore, under robustness the effect of an infinitesimal perturba-
tion can be computed by simply comparing the value of the decision
problem to the expected utility obtained by choosing the optimal act
for 𝑃 when the ‘‘true’’ probability is 𝑄. Based on this result, for a given
triple (𝑢, 𝑃 , 𝐹 ), robustness can thus be quantified by taking the 𝑄 ∈ 𝐶
that maximizes this difference.

Definition 4. For ≽ with representation (𝑢, 𝑃 ) and a decision problem
𝐹 , define 𝑚(𝑢, 𝑃 , 𝐹 ) as

𝑚(𝑢, 𝑃 , 𝐹 ) = sup
𝑄∈𝐶

|𝑑𝑄𝑊 (𝑃 )| = sup
𝑄∈𝐶 ∫ 𝑢(𝑓 ∗)𝑑𝑄 − ∫ 𝑢(𝑓 ∗)𝑑𝑃 . (5)

This approach is similar to the one used in robust statistics (see
Hampel (1974), pp. 387–388). It is straightforward to find conditions
that guarantee that the supremum in (5) is attained.

Proposition 2. If 𝐶 is weak∗-compact then there exists 𝑄∗ such that

𝑚(𝑢, 𝑃 , 𝐹 ) = ∫ 𝑢(𝑓 ∗)𝑑𝑄∗ − ∫ 𝑢(𝑓 ∗)𝑑𝑃 .

Proof. Omitted. □

It is important to note that the magnitude of sup𝑄∈𝐶 ∫ 𝑢(𝑓 ∗)𝑑𝑄 −
∫ 𝑢(𝑓 ∗)𝑑𝑃 does not in itself have any meaning in utility theory, since it
can be made arbitrarily large or small by an affine positive transforma-
tion of the utility function 𝑢. It can nonetheless be used to compare
attitudes toward robustness of different agents who share the same
Bernoulli utility and set of plausible perturbations 𝐶, as discussed in the
next result. In applications, the primary interest lies in understanding
how varying beliefs influence robustness, rather than uncertainties
related to tastes.

Consider two preferences ≽1 and ≽2 with representation given by
(𝑢, 𝑃1), (𝑢, 𝑃2) and fix a decision problem 𝐹 ⊆  . Assume that ≽1 and
≽2 have well-defined certainty equivalents, i.e., for 𝑖 = 1, 2 and every
𝑓 ∈  there exists 𝐶𝐸𝑖(𝑓 ) ∈ 𝑋 such that 𝐶𝐸𝑖(𝑓 ) ∼𝑖 𝑓 .10 Denote with
𝑓𝑖 an optimal act for agent 𝑖 and suppose that 𝐶𝐸1(𝑓1) ∼1 𝐶𝐸2(𝑓2) for
some 𝑥∗ ∈ 𝑋, or equivalently that ∫ 𝑢(𝑓1)𝑑𝑃1 = ∫ 𝑢(𝑓2)𝑑𝑃2. This last
assumption requires the two agents to be comparable in the sense that
they assign the same value to the decision problem. For a given agent
𝑖 = 1, 2 and 𝑄 ∈ 𝐶, define analogously to the previous section the set
of perturbations of the optimal act 𝑓𝑖 as

𝐹 𝑖
𝑄 = {𝑓𝑖𝐸𝑥 ∶ 𝐸 ∈ 𝛴, 𝑥 ∈ 𝑋,∫ 𝑢(𝑓𝑖𝐸𝑥)𝑑𝑃𝑖 = ∫ 𝑢(𝑓𝑖)𝑑𝑄},

and

𝐹 𝑖
𝐶 = ∪

𝑄∈𝐶
𝐹 𝑖
𝑄.

9 A complete study of affine derivatives can be found in Cerreia-Vioglio
t al. (2019).
10 Certainty equivalents exist under standard regularity assumptions on 𝑢.
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Note that by Theorem 1 the sets 𝐹 𝑖
𝑄 are non-empty. Denote with 𝑓𝑖𝐸𝑖𝑥𝑖

an optimal act in 𝐹 𝑖
𝐶 for agent 𝑖. The next proposition will show

that these are well-defined and will provide an interpretation for the
statement that agent 2 is ‘‘more robust’’ than agent 1, i.e. 𝑚(𝑢, 𝑃1, 𝐹 ) ≥
𝑚(𝑢, 𝑃2, 𝐹 ).

Proposition 3. Assume that 𝑋 = R and that the set 𝐶 is weak∗-compact.
Then

𝑚(𝑢, 𝑃1, 𝐹 ) ≥ 𝑚(𝑢, 𝑃2, 𝐹 ) ⟺ 𝐶𝐸1(𝑓1𝐸1𝑥1) ≥ 𝐶𝐸2(𝑓2𝐸2𝑥2).

Proof. See Appendix. □

The interpretation of the previous result is simple: a more robust
agent will value less (in monetary terms) the set of perturbations of
the optimal act than the less robust agent.

Observe that since the ratio
𝑚(𝑢, 𝑃1, 𝐹 )
𝑚(𝑢, 𝑃2, 𝐹 )

=
sup𝑄∈𝐶 ∫ 𝑢(𝑓 ∗)𝑑𝑄 − ∫ 𝑢(𝑓 ∗)𝑑𝑃1

sup𝑄∈𝐶 ∫ 𝑢(𝑓 ∗)𝑑𝑄 − ∫ 𝑢(𝑓 ∗)𝑑𝑃2
,

is preserved under positive affine transformations of the utility function
𝑢, it can be used to measure the robustness of 𝑃2 compared to that of
𝑃1. In some cases, the value of 𝑚(𝑢, 𝑃 , 𝐹 ) can be expressed analytically.

Example 6. Suppose that 𝐶 is the Kullback–Leibler (KL) neighborhood
used by Hansen and Sargent (see Strzalecki (2011)). More precisely, let

𝐶 = {𝑄 ∈ 𝛥 ∶ 𝑄 ≪ 𝑃 ,𝑅(𝑄‖𝑃 ) ≤ 𝐾}, (6)

where 𝐾 > 0 and

𝑅(𝑄 ∥ 𝑃 ) =

{

∫ log
(

d𝑃
d𝑄

)

𝑑𝑃 if 𝑄 ≪ 𝑃 ;
∞ otherwise.

The advantage of the KL neighborhood is that it is a very tractable
non-parametric set of probability measures. Using well-known results,
one can obtain a closed form representation for 𝑚(𝑢, 𝑃 , 𝐹 ) when 𝐶 is
iven by (6).

roposition 4. Suppose that 𝐶 is given by (6). Then there exists 𝜃 ≥ 0
decreasing with 𝐾, such that

𝑚(𝑢, 𝑃 , 𝐹 ) = 𝜃 log
(

∫ 𝑒
1
𝜃 𝑢(𝑓

∗)𝑑𝑃
)

− ∫ 𝑢(𝑓 ∗)𝑑𝑃 .

Proof. See Appendix. □

Observe that in this example 𝐶 need not be weak∗-compact. Indeed,
the comparative statics result in Proposition 3 will hold as long as the
optimization problem has a solution, an assumption satisfied by the KL
neighborhood.

5. Applications

This section provides applications of the measure of robustness to
a climate mitigation problem (Example 1) and to a portfolio choice
problem (Example 2). I show how under certain assumptions prior
distributions with heavy or fat tails can be associated with higher
robustness, as measured by the criterion developed in the previous
section.11

Part of the literature on decision theory has suggested that the
Bayesian framework cannot properly account for model uncertainty
(see Marinacci (2015) and Berger and Marinacci (2020) pp. 487–489).
It is argued that all uncertainty about the right probability or ‘‘model’’

11 I use the terms heavy and fat tails interchangeably, however some authors
distinguish between the two; see for example Taleb and Cirillo (2019) p.6.
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is reduced to risk: heuristically, given a set (𝑃𝜃)𝜃 and a prior belief 𝜇
n 𝜃 the two-stage robust criterion problem

sup
∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃 = sup

𝑓∈𝐹 ∫

(

∫ 𝑢(𝑓 )𝑑𝑃𝜃

)

𝑑𝜇,

s equivalent to the standard Bayesian criterion with average prior
̄ = ∫ 𝑃𝜃𝑑𝜇(𝜃).

However, the point here is that averaging different models can
ead to thicker tails, e.g., the Student’s 𝑡-distribution can be written
s a mixture of Gaussian distributions.12 Hence, model uncertainty can
ndeed lead to more robust decisions.

.1. Climate mitigation

Consider the abatement policy from Example 2. Assume that 𝛽 = 1,
(𝑥) = −𝑒−𝑥, 𝑟(𝑎) = 𝑎, and that 𝑃 is such that 𝑐2(𝑎, ⋅) ∼ log

(

𝑎𝜇, 𝜎2
)

for
very 𝑎 ∈ [0,∞). Therefore, a higher level of abatement policy at 𝑡 = 1
ncreases the average level of consumption at 𝑡 = 2. The maximization
roblem can be written as:

(𝑃 ) = max
𝑎∈R+

𝑣
(

𝑤1 − 𝑟(𝑎)
)

+ 𝛽E𝑃 𝑣
(

𝑐2(𝑎, ⋅)
)

= max
𝑎∈[0,∞)

− 𝑒
𝜎2
2 −𝑎𝜇 − 𝑒𝑎−𝑐 .

Let

𝐶 = {𝑄 ∈ 𝛥 ∶ 𝑄 ∼ log (𝜇, 𝜎), (𝜇, 𝜎) ∈ [
̄
𝜇, �̄�] × [

̄
𝜎, �̄�]}.

The set 𝐶 can be thought of as a group of experts who vary in terms of
the level of the parameter (𝜇, 𝜎2). Weitzman (2011) highlighted impor-
tance of heavy-tailed distribution to model robustness with respect to
catastrophic outcomes. Here I use the parameter of kurtosis to measure
how heavy tails are (see for example Müller et al. (1998)).

Hence, a higher level of variance 𝜎2 is associated with heavier tails.
The next proposition offers a comparative statics result that shows how
heavier tails are ranked as more robust. Each 𝑃 can be identified with
the pair of parameters (𝜇, 𝜎2) and denote with 𝑎𝑃 the optimal action for
the belief 𝑃 .

Proposition 5. Consider 𝑃1, 𝑃2 ∈ 𝐶 such that 𝜎22 > 𝜎21 , 𝑉 (𝑃1) = 𝑉 (𝑃2)
and
𝜎22 − 𝜎21

2
≤
(

𝑎𝑃2𝜇2 − 𝑎𝑃1𝜇1
)

− (𝑎𝑃2 − 𝑎𝑃1 )�̄�. (7)

Then it holds that

𝑚(𝑣, 𝑃1, 𝐴) ≥ 𝑚(𝑣, 𝑃2, 𝐴).

Proof. See Appendix. □

The above proposition formalizes the relationship between heavy-
tailed distributions and robustness of mitigation policy. Heavy tails lead
to more robust choices, provided that the difference between 𝜎22 and
𝜎21 is small enough as described by the bound in (7). Several papers
have employed heavy tailed distributions (e.g., Ikefuji et al. (2020) and
Ackerman et al. (2010)) to model catastrophic climate risk.

Proposition 5 demonstrates that climate mitigation policies that
are based on heavy-tailed distributions will be more robust to model
misspecification. This means that even if the underlying assumptions
are incorrect, the impact on social utility will be less severe. Further, it
shows how the measure of robustness developed here can be applied.

5.2. Portfolio choice

The Student’s 𝑡-distribution is often regarded as a robust alternative
to the normal distribution. In statistics, it is typically employed in the

12 See for example Murphy (2012), p. 361.
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Table 1
Measure of robustness for different neighborhood sizes.

𝜃 = 30 𝜃 = 20 𝜃 = 2

𝑚(𝑢, 𝐹 , 𝑃1) 0.16574 0.16690 0.1918
𝑚(𝑢, 𝐹 , 𝑃2) 0.16544 0.16650 0.1905
𝑚(𝑢,𝐹 ,𝑃1 )
𝑚(𝑢,𝐹 ,𝑃2 )

1.00181 1.00240 1.00682

rejection of outliers, as first pointed out in a paper by De Finetti (1961).
For example, Meinhold and Singpurwalla (1989) study a robustifica-
tion of the Kalman filter using multivariate Student’s 𝑡-distributions.
In economics, Weitzman (2007) studies implications to asset pric-
ing of parameter (or model) uncertainty, which leads to fat tailed
distributions.

Here I use the measure developed in the previous section to compare
the robustness of the 𝑡-distribution to the normal distribution. More
recisely, in a simple portfolio allocation problem, I show that if the
tility function incorporates explicitly a distaste for fat tails, modeling
eturns of a risky asset with a Student’s 𝑡-distribution is ranked as more
obust than normally distributed returns.

Consider again Example 1, in which the DM has to allocate his
ealth (normalized to 1) between a risk-free asset with return fixed
t 𝑟𝑓 = 1 and a risky asset with values in R, so that the problem can
e written as

max
∈[0,1]

E𝑃 𝑢(𝛼𝜔 + (1 − 𝛼)).

To compare different probabilistic assumptions on 𝑃 , it is necessary
o specify a set 𝐶 of possible perturbations. A tractable specification
hat I adopt is the entropy neighborhood from Eq. (6). In particular, I
ompare 𝑃1, 𝑃2 ∈ 𝐶 such that 𝑃1 ∼ 𝑁(0, 1.716), 𝑃2 ∼ 𝑡(5) and take 𝑃1 to

be the center of the neighborhood, so that 𝐶 = {𝑄 ∈ 𝛥(R) ∶ 𝑅(𝑄‖𝑃1) ≤
𝐾}.

To incorporate an explicit distaste for fat tails, I assume that 𝑢(𝑥) =
𝑥 − 𝑥4. To understand such an assumption, note that the DM prefers
higher expected value and dislikes higher fourth moment. Since kurto-
sis, a measure of heavy tails, is identified with the fourth moment, such
a specification for 𝑢 can be thought of as a way to model a distaste for
fat tails.

Under these assumptions, the optimal allocations of wealth for the
two probabilities are 𝛼1 ≈ 0.120665, 𝛼2 ≈ 0.11752, and the optimal
values are the same, E𝑃1𝑢(𝛼1𝜔 + (1 − 𝛼1)) = E𝑃2𝑢(𝛼2𝜔 + (1 − 𝛼2)) ≈
0.163662 so that the one can use the comparative robustness result from
Proposition 3.

The next result provides a closed-form expression for 𝑚(𝑢, 𝑃𝑖, 𝐹 )
analogous to that in Proposition 4.

Proposition 6. There exists 𝜃 ≥ 0 decreasing with 𝐾 such that for 𝑖 = 1, 2

𝑚(𝑢, 𝑃𝑖, 𝐹 ) = 𝜃 log
(

E𝑃 𝑒
1
𝜃 𝑢(𝛼𝑖𝜔+(1−𝛼𝑖))

)

− E𝑃𝑖𝑢
(

𝛼𝑖𝜔 + (1 − 𝛼𝑖)
)

.

roof. See Appendix. □

Thanks to this result, it is possible to compare the values of 𝑚(𝑢, 𝑃𝑖,
𝐹 ), 𝑖 = 1, 2 for different values of 𝜃.13 Recall that 𝜃 is decreasing with
the size of the neighborhood 𝐾. Approximate values are reported in
Table 1.

Since 𝑚(𝑢, 𝐹 , 𝑃1) > 𝑚(𝑢, 𝐹 , 𝑃2) for all values of 𝜃, 𝑃2 is ranked as
more robust than 𝑃2. The main force behind this result is that the
share of wealth invested in the risky asset is higher under the normal
distribution (i.e., 𝛼1 > 𝛼2), implying that

sup
𝑄∈𝐶

E𝑄𝑢(𝛼1𝜔 + (1 − 𝛼1)) > sup
𝑄∈𝐶

E𝑄𝑢(𝛼2𝜔 + (1 − 𝛼2)).

13 It is possible to check that 𝑃2 ∈ 𝐶 for all the corresponding values of
𝜃 = 30, 20, 2.
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Moreover, the ratio 𝑚(𝑢,𝐹 ,𝑃1)
𝑚(𝑢,𝐹 ,𝑃2)

increases as 𝜃 decreases, i.e. as the size of

increases the relative robustness of 𝑃2 with respect to 𝑃1 increases.

. Concluding remarks

This paper examined the following question: can one develop a
hoice-based theory of robustness in a purely Bayesian framework?
he main motivation has been the practical appeal of the Bayesian
pproach, irrespective of its ability to rationalize actual behavior under
ncertainty.

I have provided a positive answer to the above question. The
tarting point of this theory is an axiomatization of Bayesian decision
akers whose optimal value for a fixed decision problem is continuous

n the prior.
The axiomatic approach is one of the major novelties of the paper.

n conclusion, this paper presents a theory of comparative robustness
hat enables a formal comparison of the sensitivity of the conclusions
f a Bayesian model to variations in the prior. This contribution allows
or a more thorough evaluation of the robustness of Bayesian models.

ata availability

No data was used for the research described in the article.

ppendix

athematical preliminaries

opological preliminaries. Let (𝑇 , 𝜏) be a first-countable topological
space (so that only sequences need to be considered). Given a se-
quence (𝑡𝑛)∞𝑛=1 we denote convergence to a point 𝑡 ∈ 𝑇 by 𝑡𝑛

𝜏
←←←←←←→ 𝑡. A

double-indexed sequence is a mapping 𝑡 ∶ N × N → 𝑇 .

Lemma 1. Consider a double-indexed sequence (𝑡𝑛,𝑚)(𝑛∈N,𝑚∈N) such that

(1) For every 𝑚, 𝑡(𝑛,𝑚)
𝜏
←←←←←←→ 𝑡𝑚 for some 𝑡𝑚 ∈ 𝑇 .

(2) 𝑡𝑚
𝜏
←←←←←←→ 𝑡 for some 𝑡 ∈ 𝑇 .

Then there exists an increasing mapping 𝜄 ∶ N → N and with
lim𝑚→∞ 𝜄(𝑚) = ∞ such that

𝑡𝑛,𝜄(𝑛)
𝜏
←←←←←←→ 𝑡.

roof. See Attouch (1984), Corollary 1.18. □

As discussed in the main text, one of the main mathematical tech-
iques for studying robustness is that of 𝛤 -convergence. 𝛤 -convergence
s a notion of convergence for functionals germane to studying the
onvergence of optima and maximizers. Its usual formulation is for
inimization problems. Here I present the analogous notion for maxi-
ization problems.

efinition 5. Let 𝑇 be a first-countable topological space. A sequence
f functions 𝐹𝑛 ∶ 𝑇 → R 𝛤 -converges to a function 𝐹 ∶ 𝑇 → R if

(i) For every sequence 𝑡𝑛
𝜏
←←←←←←→ 𝑡,

𝐹 (𝑡) ≥ lim sup
𝑛→∞

𝐹𝑛(𝑡𝑛).

(ii) For every 𝑡 ∈ 𝑇 , there exists a sequence 𝑡𝑛
𝜏
←←←←←←→ 𝑡 such that

𝐹 (𝑡) ≤ lim inf
𝑛→∞

𝐹𝑛(𝑡𝑛).

f 𝐹𝑛 𝛤 -converges to 𝐹 , then I write

- lim𝐹 = 𝐹 .
101
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The assumption that 𝑇 is first-countable is necessary to focus only
n sequences and avoid the use of nets. 𝛤 -convergence is tightly
onnected to perturbations of optimization problems as the next re-
ult shows. This result will be extremely important in the proof of
heorem 2.

heorem 4 (Attouch, 1984, Theorem 1.10). Consider a first-countable
topological space 𝑇 and a functional 𝐹 ∶ 𝑇 → R. A sequence of functionals
𝐹𝑛 ∶ 𝑇 → R such that 𝛤 -lim𝐹𝑛 = 𝐹 and argmax𝐹 ≠ ∅ satisfies
up𝐹𝑛 → max𝐹 if and only if there exists 𝜀𝑛 → 0 and a compact sequence
𝑡𝑛)𝑛 such that 𝑡𝑛 is 𝜀𝑛-optimal for 𝐹𝑛.

The following simple example shows how 𝛤 -convergence is not
nough to get convergence of suprema and also shows the key role
layed by compactness.

xample 7. Consider the sequence of functions 𝐹𝑛 ∶ R → R defined
y

𝑛(𝑡) =

⎧

⎪

⎨

⎪

⎩

1 𝑡 ≥ 𝑛,
𝑡
𝑛 0 ≤ 𝑡 < 𝑛,
𝑡 𝑡 < 0.

t is possible to show that 𝛤 -lim𝐹𝑛 = 𝐹 where 𝐹 is defined by

(𝑡) =

{

0 𝑡 ≥ 0,
𝑡 𝑡 < 0.

his follows by applying Proposition 5.2 in Dal Maso (1993) and the
act that 𝐹𝑛 converges to 𝐹 uniformly on every bounded set. However,
ote that max𝑡∈R 𝐹𝑛(𝑡) = 1 → 1 ≠ max𝑡∈R 𝐹 (𝑥) = 0 and argmax𝑡∈R𝐹𝑛(𝑡) =
→ ∞.

The main references for the literature on 𝛤 -convergence are At-
ouch (1984), Dal Maso (1993) and Braides (2002). An important
otion of convergence related to 𝛤 -convergence is that of Kuratowski
onvergence. Given a sequence (𝐶𝑛)∞𝑛=1 of subsets of 𝑇 , let

s𝐶𝑛 = {𝑡 ∈ 𝑇 ∶ there exist (𝑛𝑘)∞𝑘=1 and 𝑡𝑛𝑘 ∈ 𝐶𝑛𝑘 such that 𝑡𝑛𝑘
𝜏
←←←←←←→ 𝑡}.

nd

i𝐶𝑛 = {𝑡 ∈ 𝑇 ∶ 𝑡𝑛
𝜏
←←←←←←→ 𝑡, and for some 𝑘, 𝑡𝑛 ∈ 𝐶𝑛∀𝑛 ≥ 𝑘}.

Kuratowski limits allow for a different characterization of 𝛤 -limits.

heorem 5. Consider a sequence 𝐹𝑛 ∶ 𝑇 → R. Let

ypo(𝐹𝑛) = {(𝑡, 𝑥) ∈ 𝑇 × R ∶ 𝐹𝑛(𝑡) ≤ 𝑥}.

hen 𝛤 -lim𝐹𝑛 = 𝐹 if and only if Lihypo(𝐹𝑛) = Lshypo(𝐹𝑛) = hypo𝐹 .

roof. See Dal Maso (1993), Theorem 4.16. □

In words, 𝛤 -convergence of 𝐹𝑛 to 𝐹 is equivalent to the Kuratowski
onvergence of the hypo-graphs (the subset of 𝑇 × R that lies below
he graph of 𝐹𝑛) of 𝐹𝑛 to that of 𝐹 . This gives an intuitive geometric
haracterization of 𝛤 -convergence (and explains the equivalent name
sed in the literature of hypo-convergence/epi-convergence). Note that
uratowski convergence is weaker than the notion of Hausdorff conver-
ence, which is more familiar to economists.

easure-theoretic preliminaries. Fix a measurable space (𝛺,)
here  is a 𝜎-algebra of subsets of 𝛺. As standard, call a map 𝜇 ∶
→ [0,∞) a measure if it is countably additive. A measurable function
∶ 𝛺 → R is 𝜇-integrable if

up
{

∫ 𝑠𝑑𝜇 ∶ 0 ≤ 𝑠 ≤ |𝑓 |, 𝑠 ∶ 𝛺 → R is simple
}

< ∞.

For 𝑘 ∈ N, call 𝜈 ∶  → R𝑘 a vector measure if for every sequence
𝐴𝑖)∞𝑖=1 of pairwise disjoint sets it holds
( ∞
⋃

𝐴𝑖

)

= lim
𝑛→∞

𝑛
∑

𝜈(𝐴𝑖),

𝑖=1 𝑖=1
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where the limit on the right hand side is taken with respect to the norm
defined by ‖x‖1 =

∑𝑘
𝑖=1 |𝑥𝑖| for x = (𝑥𝑖)𝑘𝑖=1 ∈ R𝑘.

Given a vector measure 𝜈 and 𝐴 ∈ , let |𝜈|(𝐴) be the measure given
y

𝜈|(𝐴) = sup
(𝐵𝑖)𝑚𝑖=1∈𝛱(𝐴)

∑

‖𝜈(𝐵𝑖)‖1,

here 𝛱(𝐴) = {𝐵 = (𝐵𝑖)∞𝑖=1 ∶ 𝐵 is a partition of 𝐴}. If |𝜈|(𝐴) < ∞
or every 𝐴 ∈ , let |𝜈| denote the measure |𝜈| ∶  → R defined by
↦ |𝜈|(𝐴).
I provide some key facts about vector measures. Recall that measure

is non-atomic if for every 𝐴 such that 𝜈(𝐴) > 0 there exists 𝐵 ⊂ 𝐴
uch that 𝜈(𝐴) > 𝜈(𝐵) > 0. A vector measure 𝜈 is non-atomic if |𝜈| is
on-atomic. A collection (𝐴𝛼)𝛼∈[0,1] with 𝐴𝛼 ∈  for every 𝛼 ∈ [0, 1] is
chain if 𝐴0 = ∅, 𝐴1 = 𝛺 and 𝑡 ≤ 𝑠 ⟹ 𝐴𝑡 ⊆ 𝐴𝑠.

emma 2. Let 𝜈 ∶  → R𝑛 be a vector measure.

(i) |𝜈| is a measure;
(ii) if 𝜈 is a non-atomic vector measure, then the set

{𝜈(𝐴) ∶ 𝐴 ∈ },

is compact and convex;
(iii) if 𝜈 is non-atomic vector measure, then there exists a chain (𝐴𝛼)𝛼∈[0,1]

such that

𝜈(𝐴𝛼) = 𝛼𝜈(𝛺).

roof. Point (i) is well-known so I omit the proof. See Diestel and
hl (1977) for a proof. For point (ii), see Diestel and Uhl (1977)
r Fryszkowski (2004). For a proof of (iii), see Fryszkowski (2004),
heorem 15. □

The next result is well known, but I provide a proof for complete-
ess.

emma 3. Let 𝜇 be a real valued non-atomic measure. Then if 𝑓 ∶ 𝛺 → R

s integrable and |𝑓 | ≠ 0 𝜇-a.s., the measure 𝜇
|𝑓 | defined by

|𝑓 |(𝐴) = ∫𝐴
|𝑓 (𝜔)|𝑑𝜇(𝜔) ∀𝐴 ∈ ,

s non-atomic.
Further, let 𝜇 be a measure and 𝑓 ∶ 𝛺 → R 𝜇-integrable. Define the

easure 𝜇𝑓 by

𝑓 (𝐴) = ∫𝐴
𝑓 (𝜔)𝑑𝜇(𝜔) ∀𝐴 ∈ .

hen it holds that

𝜇𝑓 |(𝐴) = ∫𝐴
|𝑓 (𝜔)|𝑑𝜇(𝜔) = 𝜇

|𝑓 |(𝐴),

or every 𝐴 ∈ .

roof. It is well known that |𝑓 | is also integrable and that |𝜇𝑓 | is
measure. Suppose that 𝐸 is an atom for 𝜇

|𝑓 |, and consider the set
′ = {|𝑓 | > 0} ∩ 𝐸. Then 𝐸′ is also an atom for 𝜇

|𝑓 |. Since 𝜇
|𝑓 | is

on-atomic, there exists 𝐴 ⊂ 𝐸′ such that 0 < 𝜇
|𝑓 |(𝐴) < 𝜇

|𝑓 |(𝐸′). Note
hat 𝑓 = 0 𝜇-a.s. on either 𝐴 or 𝐸′ ⧵ 𝐴 (otherwise 𝜇

|𝑓 |(𝐴) > 0 and
|𝑓 |(𝐸′ ⧵𝐴) > 0, which contradicts the set 𝐸′ being an atom). However,
his contradicts the assumption that |𝑓 | is positive on 𝐸′.

Now let 𝐴 ∈  and consider a partition (𝐵𝑖)∞𝑖=1 of 𝐴. We have
∞

𝑖=1
|𝜇𝑓 (𝐵𝑖)| =

∞
∑

𝑖=1

|

|

|

|

∫𝐵𝑖

𝑓 (𝜔)𝑑𝜇(𝜔)
|

|

|

|

≤
∞
∑

𝑖=1
∫𝐵𝑖

|𝑓 (𝜔)|𝑑𝜇(𝜔)

= ∫𝐴
|𝑓 (𝜔)|𝑑𝜇(𝜔).

∫

102

hus |𝜇𝑓 |(𝐴) ≤ 𝐴 |𝑓 (𝜔)|𝑑𝜇(𝜔).
Conversely, consider the partition of 𝐴 ∈  given by 𝐵1 = {𝜔 ∈ 𝐴 ∶
(𝜔) ≥ 0} and 𝐵2 = {𝜔 ∈ 𝐴 ∶ 𝑓 (𝜔) < 0}. Then by definition

∫ |𝑓 (𝜔)|𝑑𝜇(𝜔) = ∫𝐴
𝑓+𝑑𝜇(𝜔) + ∫𝐴

𝑓−𝑑𝜇(𝜔)

= |𝜇𝑓 (𝐵1)| + |𝜇𝑓 (𝐵2)| ≤ |𝜇𝑓 |(𝐴).

ence |𝜇𝑓 |(𝐴) = ∫𝐴 |𝑓 (𝜔)|𝑑𝜇(𝜔) for every 𝐴 ∈  as desired. □

emma 4. Consider the vector measure 𝜆 ∶ 𝛴 → R2 defined by

↦ 𝜆(𝐴) ∶=
(

∫𝐴
𝑢(𝑓 )𝑑𝑃 , 𝑃 (𝐴)

)

.

hen 𝜆 is non-atomic.

roof. Indeed, for every 𝐴 ∈ 𝛴

𝜆|(𝐴) = sup
∞
∑

𝑖=1
𝑃 (𝐴𝑖) + |𝑃𝑢◦𝑓 (𝐴𝑖)|

= sup
∞
∑

𝑖=1
𝑃 (𝐴𝑖) +

∞
∑

𝑖=1
|𝑃𝑢◦𝑓 (𝐴𝑖)|

= sup
∞
∑

𝑖=1
|𝑃𝑢◦𝑓 (𝐴𝑖)| + 𝑃 (𝐴)

= |𝑃𝑢◦𝑓 |(𝐴) + 𝑃 (𝐴),

here the supremum is over all 𝛴-measurable partitions (𝐴𝑖)∞𝑖=1 of 𝐴.
hus |𝜆| = |𝑃𝑢◦𝑓 | + 𝑃 . Now by Lemmas 3 and 3 |𝑃𝑢◦𝑓 | is non-atomic
or identically zero, in which case the result is immediate), so that |𝜆|
s the sum of two non-atomic measures, hence it is non-atomic as well
e.g., see Johnson (1970), Theorem 1.2). □

roof of Theorem 1. Note that, since we are considering bounded acts,
or every 𝑓 ∈ 𝐹 there are 𝑥𝑓 , 𝑦𝑓 such that

𝑓 ⩽ 𝑓 ⩽ 𝑥𝑓 .

o prove the claim, there are three cases to consider. Define the
ollowing partition of N:

1 ∶=
{

𝑛 ∈ N ∶ ∫ 𝑢(𝑓 )𝑑𝑃 = ∫ 𝑢(𝑓 )𝑑𝑃𝑛

}

,

2 ∶=
{

𝑛 ∈ N ∶ ∫ 𝑢(𝑓 )𝑑𝑃 < ∫ 𝑢(𝑓 )𝑑𝑃𝑛

}

,

nd

3 ∶=
{

𝑛 ∈ N ∶ ∫ 𝑢(𝑓 )𝑑𝑃 > ∫ 𝑢(𝑓 )𝑑𝑃𝑛

}

.

f 𝑛 ∈ 𝑁1 then we can just define 𝐴𝑛,𝑓 ≡ 𝑆 and 𝑥𝑛,𝑓 ≡ 𝑥𝑓 . If 𝑛 ∈ 𝑁2
since

𝑢(𝑥𝑓 ) ≥ ∫ 𝑢(𝑓 )𝑑𝑃𝑛,

we can apply Lemmas 4 and 2 to obtain a family (𝐴𝛼)𝛼∈[0,1] such that

∫ 𝑢(𝑓𝐴𝛼𝑥𝑓 )𝑑𝑃 = ∫𝐴𝛼

𝑢(𝑓 )𝑑𝑃 + (1 − 𝑃 (𝐴𝛼))𝑢(𝑥𝑓 )

= 𝛼 ∫ 𝑢(𝑓 )𝑑𝑃 + (1 − 𝛼)𝑢(𝑥𝑓 ).

It follows that
{

∫ 𝑢(𝑓𝐴𝛼𝑥𝑓 )𝑑𝑃 ∶ 𝛼 ∈ [0, 1]
}

=
[

∫ 𝑢(𝑓 )𝑑𝑃 , 𝑢(𝑥𝑓 )
]

.

In particular, we have

∫ 𝑢(𝑓 )𝑑𝑃𝑛 ∈
[

∫ 𝑢(𝑓 )𝑑𝑃 , 𝑢(𝑥𝑓 )
]

,

so that ∫𝐴𝛼𝑛
𝑢(𝑓 )𝑑𝑃 + (1 − 𝑃 (𝐴𝛼𝑛 ))𝑢(𝑥𝑓 ) = ∫ 𝑢(𝑓 )𝑑𝑃𝑛 where

𝛼𝑛 = 1 −
∫ 𝑢(𝑓 )𝑑𝑃 − ∫ 𝑢(𝑓 )𝑑𝑃𝑛 .
∫ 𝑢(𝑓 )𝑑𝑃 − 𝑢(𝑥𝑓 )
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The last case to consider is 𝑛 ∈ 𝑁3, which can be dealt with sym-
metrically to the previous case (in particular, using 𝑦𝑓 in place of
𝑥𝑓 ).

Hence for every 𝑛 there must be 𝛼𝑛 and 𝑥 ∈ {𝑥𝑓 , 𝑦𝑓 } such that

∫𝐴𝛼𝑛

𝑢(𝑓 )𝑑𝑃 + (1 − 𝑃 (𝐴𝛼𝑛 ))𝑢(𝑥) = ∫ 𝑢(𝑓 )𝑑𝑃𝑛.

In particular, the 𝛼𝑛’s satisfy

𝛼𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − ∫ 𝑢(𝑓 )𝑑𝑃−∫ 𝑢(𝑓 )𝑑𝑃𝑛
∫ 𝑢(𝑓 )𝑑𝑃−𝑢(𝑦𝑓 )

∫ 𝑢(𝑓 )𝑑𝑃 − ∫ 𝑢(𝑓 )𝑑𝑃𝑛 > 0,

1 if ∫ 𝑢(𝑓 )𝑑𝑃 − ∫ 𝑢(𝑓 )𝑑𝑃𝑛 = 0,

1 − ∫ 𝑢(𝑓 )𝑑𝑃−∫ 𝑢(𝑓 )𝑑𝑃𝑛
∫ 𝑢(𝑓 )𝑑𝑃−𝑢(𝑥𝑓 )

∫ 𝑢(𝑓 )𝑑𝑃 − ∫ 𝑢(𝑓 )𝑑𝑃𝑛(𝑠) < 0.

Since 𝑢(𝑓 ) ∈ 𝐶𝑏(𝑆,R) we have ∫ 𝑢(𝑓 )𝑑𝑃𝑛 → ∫ 𝑢(𝑓 )𝑑𝑃 it follows that
𝛼𝑛 → 1. It follows that 𝑃 (𝐴𝛼𝑛 ) = 𝛼𝑛 → 1 as desired. □

Proof of Theorem 2. Given (𝑃𝑛)∞𝑛=1 such that 𝑃𝑛
∗
→ 𝑃 , for 𝑛 = 1,… let

𝑉𝑛 ∶ 𝐹 → R be defined by

𝑓 ↦ ∫ 𝑢(𝑓 )𝑑𝑃𝑛.

The next theorem is a type of 𝛤 -convergence result for integral
functionals.

Theorem 6. For any 𝑃𝑛
∗
→ 𝑃 ,

𝛤 - lim𝑉𝑛 = 𝑉

Proof. See Theorem 14 in Lucchetti and Wets (1993). □

Proof of Theorem 2. Suppose that ≽ has a preference for stability. By
definition, this implies that for every (𝐹𝑛)𝑛 there is 𝜀𝑛 → 0 and a stable
sequence 𝑔𝑛 = (𝑓𝑛𝐸𝑛𝑥𝑛) ∈ max𝑢,𝑃 ,𝜀𝑛 .

In addition, it holds that

∫ 𝑢(𝑔𝑛)𝑑𝑃 = ∫ 𝑢(𝑓𝑛)𝑑𝑃𝑛.

Moreover, it must be that

sup
𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃𝑛 = sup

𝑔∈𝐹𝑛 ∫
𝑢(𝑔)𝑑𝑃 .

Indeed, by construction it holds
{

∫ 𝑢(𝑓 )𝑑𝑃𝑛 ∶ 𝑓 ∈ 𝐹
}

=
{

∫ 𝑢(𝑔)𝑑𝑃 ∶ 𝑔 ∈ 𝐹𝑛

}

.

Therefore, for every 𝑛 it holds 𝑓𝑛 ∈ max𝑢,𝑃𝑛 ,𝜀𝑛 (𝐹 ). Since (𝑔𝑛)𝑛 is stable,
there is a subsequence 𝑓𝑛𝑘 → 𝑓 ∗ ∈ max𝑢,𝑃 (𝐹 ). I claim that this implies
that

lim
𝑛→∞

sup
𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃𝑛 = ∫ 𝑢(𝑓 ∗)𝑑𝑃 . (8)

First note that

∫ 𝑢(𝑓 ∗)𝑑𝑃 ≤ lim inf
𝑛→∞

sup
𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃𝑛.

This follows from Proposition 2.9 in Attouch (1984).
Finally, we also have that

∫ 𝑢(𝑓 ∗)𝑑𝑃 ≥ lim sup
𝑛→∞

sup
𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃𝑛.

Indeed,

∫ 𝑢(𝑓𝑛)𝑑𝑃𝑛 ≥ sup
𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃𝑛 − 𝜀𝑛, (9)

which implies that

lim sup 𝑢(𝑓𝑛)𝑑𝑃𝑛 ≥ lim sup sup 𝑢(𝑓 )𝑑𝑃𝑛,
103

𝑛→∞ ∫ 𝑛→∞ 𝑓∈𝐹 ∫
but by definition this means that

lim sup
𝑛→∞ ∫ 𝑢(𝑓𝑛)𝑑𝑃𝑛 = lim

𝑛→∞∫ 𝑢(𝑓𝑛𝑘 )𝑑𝑃𝑛𝑘 ,

for some subsequence 𝑛𝑘. By preference for stability, 𝑓𝑛𝑘𝑗 → 𝑓 ′ ∈
max𝑢,𝑃 (𝐹 ). But then since lim sup𝑛→∞ ∫ 𝑢(𝑓𝑛)𝑑𝑃𝑛 ≥ lim sup𝑛→∞ sup𝑓∈𝐹
∫ 𝑢(𝑓 )𝑑𝑃𝑛 we get

lim sup
𝑗→∞ ∫ 𝑢(𝑓𝑛𝑘𝑗 )𝑑𝑃𝑛𝑘𝑗

≥ lim sup
𝑛→∞

sup
𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃𝑛.

By 𝛤 -convergence,

sup
𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃 = ∫ 𝑢(𝑓 ′)𝑑𝑃 ≥ lim sup

𝑗→∞ ∫ 𝑢(𝑓𝑛𝑘𝑗 )𝑑𝑃𝑛𝑘𝑗

≥ lim sup
𝑛→∞

sup
𝑓∈𝐹 ∫ 𝑢(𝑓 )𝑑𝑃𝑛.

Hence (8) is proved.
Conversely, suppose that ≽ is robust. Take 𝑓 ∗ ∈ max𝑢,𝑃 (𝐹 ). Since

𝛤 -lim𝑉𝑛 = 𝑉 , there exists 𝑓𝑛 → 𝑓 ∗ such that lim𝑛→∞ 𝑉𝑛(𝑓𝑛) = 𝑉 (𝑓 ∗).
Now I claim that for every 𝜀 > 0 there exists 𝑁𝜀 such that

𝑓𝑛 ∈ max
𝑢,𝑃𝑛 ,𝜀

(𝐹 ) for all 𝑛 ≥ 𝑁𝜀.

To prove this claim, by contradiction assume that there is �̄� > 0 and
increasing map 𝜆 ∶ N → N such that for every 𝑛

𝑓𝜆(𝑛) ∉ max
𝑢,𝑃𝜆(𝑛) ,�̄�

(𝐹 ),

so that

∫ 𝑢(𝑓𝜆(𝑛))𝑑𝑃𝜆(𝑛) < sup
𝑔∈𝐹 ∫ 𝑢(𝑔)𝑑𝑃𝜆(𝑛) − �̄�,

but then we obtain

∫ 𝑢(𝑓 ∗)𝑑𝑃 = lim
𝑛→∞∫ 𝑢(𝑓𝜆(𝑛))𝑑𝑃𝜆(𝑛) ≤ lim

𝑛
sup
𝑔∈𝐹 ∫ 𝑢(𝑔)𝑑𝑃𝜆(𝑛) − �̄�

= ∫ 𝑢(𝑓 ∗)𝑑𝑃 − �̄�,

a clear contradiction.
Now note that for every 𝜀 > 0 we can modify the sequence (𝑓𝑛)𝑛

into the sequence (𝑓 𝜀
𝑛 )𝑛 so that for every 𝑛 it holds

𝑓 𝜀
𝑛 ∈ max

𝑢,𝑃 ,𝜀
(𝐹 ).

But then defining the double-indexed sequence 𝑔𝑘,𝑛 by

𝑔𝑘,𝑛 ≡
(

∫ 𝑢(𝑓
1
𝑘
𝑛 )𝑑𝑃𝑛, 𝑓

1
𝑘
𝑛 ,∫ 𝑢(𝑓

1
𝑘
𝑛 )𝑑𝑃

)

,

which satisfies for every 𝑘

𝑔𝑘,𝑛 →
(

∫ 𝑢(𝑓 ∗)𝑑𝑃 , 𝑓 ∗,∫ 𝑢(𝑓 ∗)𝑑𝑃
)

,

here convergence is in the topological space R × 𝐶𝑏(𝑆,𝑋) × R en-
owed with the product topology. Hence by Lemma 1 there exists 𝜄 ∶
→ N increasing and with lim𝑛→∞ 𝜄(𝑛) = ∞ such that lim𝑛→∞ 𝑔𝜄(𝑛),𝑛 =

∫ 𝑢(𝑓 ∗)𝑑𝑃 , 𝑓 ∗, ∫ 𝑢(𝑓 ∗)𝑑𝑃
)

. Therefore,

1
𝜄(𝑛)
𝑛 ∈ max

𝑢,𝑃𝑛 ,
1
𝜄(𝑛)

(𝐹 ), 1
𝜄(𝑛)

→ 0.

Set 𝑓 𝜀𝑛
𝑛 ≡ 𝑓

1
𝜄(𝑛)
𝑛 and note that 𝑓 𝜀𝑛

𝑛 ∈ max𝑢,𝑃𝑛 ,𝜀𝑛 . Note that 𝑓 𝜀𝑛
𝑛 → 𝑓 ∗

nd ∫ 𝑢(𝑓 𝜀𝑛
𝑛 )𝑑𝑃𝑛 → ∫ 𝑢(𝑓 ∗)𝑑𝑃 .

I now claim that there exists a sequence 𝑔𝑛 ∈ 𝐹𝑛 such that 𝑔𝑛 =
𝑓 𝜀𝑛
𝑛 𝐸𝑛𝑥𝑛, 𝑃 (𝐸𝑛) → 1, 𝑥𝑛 eventually takes only two different values and

𝑢(𝑓 𝜀𝑛
𝑛 𝐸𝑛𝑥𝑛)𝑑𝑃 = ∫ 𝑢(𝑓 𝜀𝑛

𝑛 )𝑑𝑃𝑛.

Indeed, since ∫ 𝑢(𝑓 𝜀𝑛
𝑛 )𝑑𝑃𝑛 → ∫ 𝑢(𝑓 ∗)𝑑𝑃 , there are 𝑥∗, 𝑦∗ and 𝑁 such

hat for every 𝑛 ≥ 𝑁

(𝑦∗) ≤ 𝑢(𝑓 𝜀𝑛
𝑛 )𝑑𝑃𝑛 ≤ 𝑢(𝑥∗).
∫
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To see this, let 𝑥∗, 𝑦∗ be constant acts such that 𝑥∗ ⩾ 𝑓 ∗ ⩾ 𝑦∗. Note
that we have

∫ 𝑢(𝑓 ∗)𝑑𝑃 ∈ (𝑢(𝑦∗), 𝑢(𝑥∗)),

so that by definition of convergence there must be 𝑁 such that for every
𝑛 ≥ 𝑁

𝑢(𝑦∗) ≤ ∫ 𝑢(𝑓 𝜀𝑛
𝑛 )𝑑𝑃𝑛 ≤ 𝑢(𝑥∗),

s desired. Given this result, I proceed as in the proof of Theorem 1.
efine the vector measure 𝜆𝑛 by

↦ (∫𝐴
𝑢(𝑓 𝜀𝑛

𝑛 )𝑑𝑃 , 𝑃 (𝐴)) for every 𝐴 ∈ 𝛴.

y the same reasoning as in the Proof of Theorem 1, 𝜆𝑛 is non-atomic.
ence for every 𝑛 there is a chain (𝐸𝑛

𝛼 )𝛼∈[0,1] such that for 𝑥 ∈ {𝑥∗, 𝑦∗}
t holds

𝐸𝑛
𝛼

𝑢(𝑓 𝜀𝑛
𝑛 )𝑑𝑃 + (1 − 𝑃 (𝐸𝑛

𝛼 ))𝑢(𝑥) = 𝛼 ∫ 𝑢(𝑓 𝜀𝑛
𝑛 )𝑑𝑃 + (1 − 𝛼)𝑢(𝑥).

Thus we can find sequences (𝐸𝑛)𝑛 and (𝑥𝑛)𝑛 with 𝑥𝑛 ∈ {𝑥∗, 𝑦∗} such
that ∫ 𝑢(𝑓 𝜀𝑛

𝑛 𝐸𝑛𝑥𝑛)𝑑𝑃 = ∫ 𝑢(𝑓 𝜀𝑛
𝑛 )𝑑𝑃𝑛 and

1 − 𝑃 (𝐴𝑛) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ 𝑢(𝑓𝜀𝑛
𝑛 )𝑑𝑃−∫ 𝑢(𝑓𝜀𝑛

𝑛 )𝑑𝑃𝑛
∫ 𝑢(𝑓𝜀𝑛

𝑛 )𝑑𝑃−𝑢(𝑦∗)
∫ 𝑢(𝑓 𝜀𝑛

𝑛 )𝑑𝑃 − ∫ 𝑢(𝑓 𝜀𝑛
𝑛 )𝑑𝑃𝑛 > 0,

0 if ∫ 𝑢(𝑓 𝜀𝑛
𝑛 )𝑑𝑃 − ∫ 𝑢(𝑓 𝜀𝑛

𝑛 )𝑑𝑃𝑛 = 0,
∫ 𝑢(𝑓𝜀𝑛

𝑛 )𝑑𝑃−∫ 𝑢(𝑓𝜀𝑛
𝑛 )𝑑𝑃𝑛

∫ 𝑢(𝑓𝜀𝑛
𝑛 )𝑑𝑃−𝑢(𝑥∗)

∫ 𝑢(𝑓 𝜀𝑛
𝑛 )𝑑𝑃 − ∫ 𝑢(𝑓 𝜀𝑛

𝑛 )𝑑𝑃𝑛 < 0.

But note that ∫ 𝑢(𝑓 𝜀𝑛
𝑛 )𝑑𝑃 − ∫ 𝑢(𝑓 𝜀𝑛

𝑛 )𝑑𝑃𝑛 → 0. Indeed, we know that
∫ 𝑢(𝑓 𝜀𝑛

𝑛 )𝑑𝑃𝑛 → ∫ 𝑢(𝑓 ∗)𝑑𝑃 . Moreover, ∫ 𝑢(𝑓 𝜀𝑛
𝑛 )𝑑𝑃 → ∫ 𝑢(𝑓 ∗)𝑑𝑃 . Hence

1 − 𝑃 (𝐴𝑛) → 0,

as desired.
Thus letting 𝑔𝑛 ≡ 𝑓 𝜀𝑛

𝑛 𝐸𝑛𝑥𝑛 we have 𝑔𝑛 ∈ max𝑢,𝑃 ,𝜀𝑛 (𝐹𝑛). Finally, it
holds that for a subsequence 𝑓

𝜀𝑛𝑘
𝑛𝑘

∫ ‖𝑓 ∗ − 𝑓
𝜀𝑛𝑘
𝑛𝑘 𝐸𝑛𝑘𝑥𝑛𝑘‖𝑑𝑃 → 0.

Indeed,

∫ ‖𝑓 ∗ − 𝑓 𝜀𝑛
𝑛 𝐸𝑛𝑥𝑛‖𝑑𝑃 ≤ ∫ ‖𝑓𝑛 − 𝑓𝑛𝐸𝑛𝑥𝑛‖𝑑𝑃 + ∫ ‖𝑓𝑛 − 𝑓 ∗

‖𝑑𝑃 . (10)

Since 𝑓 𝜀𝑛
𝑛 → 𝑓 ∗ uniformly, it follows that

∫ ‖𝑓 𝜀𝑛
𝑛 − 𝑓 ∗

‖𝑑𝑃 → 0.

Finally, note that we have

∫ ‖𝑓 𝜀𝑛
𝑛 − 𝑓 𝜀𝑛

𝑛 𝐸𝑛𝑥𝑛‖𝑑𝑃 = ∫ ‖𝟎𝐸𝑛𝑥𝑛‖𝑑𝑃 = ∫ ‖𝑥𝑛‖1𝐸𝑐
𝑛
𝑑𝑃 ,

where 0 denotes the zero vector. If necessary, by passing to a sub-
sequence, 1𝐴𝑐

𝑛
→ 𝟎 𝑃 -a.s. thus by applying Lebesgue’s dominated

convergence theorem we get

∫ ‖𝑓
𝜀𝑛𝑘
𝑛𝑘 − 𝑓

𝜀𝑛𝑘
𝑛𝑘 𝐸𝑛𝑘𝑥𝑛𝑘‖𝑑𝑃 → 0,

which by (10) gives

∫ ‖𝑓 ∗ − 𝑓
𝜀𝑛𝑘
𝑛𝑘 𝐸𝑛𝑘𝑥𝑛𝑘‖𝑑𝑃 → 0,

as desired. □

Proof of Proposition 1. Since 𝐹 is a compact subset of 𝐶𝑏(𝑆,𝑋) the
sequence 𝑉𝑛 is equi-coercive (cf. Dal Maso (1993), Definition 1.12).
Now since 𝑉𝑛 𝛤 -converges to 𝑉 , by applying Theorem 7.8 in Dal Maso
(1993) the result follows. If the optimum is unique, then it suffices to
apply Corollary 7.24 in Dal Maso (1993). □
104
Proof of Corollary 1. The ‘‘if’’ part is immediate.
Conversely, if 𝑓𝑛 is a sequence of 𝜀𝑛 acts that converges to an

optimal act 𝑓 ∗, then by applying Corollary 7.20 in Dal Maso (1993)
we get that

∫ 𝑢(𝑓𝑛)𝑑𝑃𝑛 → ∫ 𝑢(𝑓 ∗)𝑑𝑃 .

By using the same reasoning as in the proof of Theorem 2, one can
construct a sequence 𝑔𝑛 = 𝑓𝑛𝐸𝑛𝑥𝑛 such that 𝑔𝑛 ∈ max𝑢,𝑃 ,𝜀𝑛 (𝐹𝑛) and for
a subsequence 𝑔𝑛𝑘 satisfies

∫ ‖𝑔𝑛𝑘 − 𝑓 ∗
‖𝑑𝑃 → 0,

as desired. □

Proof of Theorem 3.

Lemma 5. 𝑉 ∶ 𝐹 → R is continuous.

Proof. Omitted. □

Proof of Theorem 3. The proof of this result is based on standard
techniques; see for example Bonnans and Shapiro (2013), Proposition
4.12 or Battauz et al. (2015). Consider any ℎ𝑛 ↓ 0. Note that by
definition it holds ∫ 𝑢(𝑓 ∗)𝑑((1 − ℎ𝑛)𝑃 + ℎ𝑛𝑄) ≤ 𝑊 ((1 − ℎ𝑛)𝑃 + 𝑄ℎ𝑛)
and ∫ 𝑢(𝑓 ∗)𝑑((1−ℎ𝑛)𝑃 +ℎ𝑛𝑄). Moreover, letting 𝜀𝑛 =

ℎ𝑛
𝑛 , any sequence

(𝑓𝜀𝑛 )𝑛 satisfies

𝑊 ((1 − ℎ𝑛)𝑃 +𝑄ℎ𝑛) ≤ ∫ 𝑢(𝑓𝜀𝑛 )𝑑((1 − ℎ𝑛)𝑃 +𝑄ℎ𝑛) + 𝜀𝑛.

Also note that
∫ 𝑢(𝑓𝜀𝑛 )𝑑((1 − ℎ𝑛)𝑃 +𝑄ℎ𝑛) − ∫ 𝑢(𝑓𝜀𝑛 )𝑑𝑃

ℎ𝑛
= ∫ 𝑢(𝑓 ∗

𝜀𝑛
)𝑑(𝑄 − 𝑃 ).

hus we get the following inequalities

∫ 𝑢(𝑓 ∗)𝑑((1 − ℎ𝑛)𝑃 + ℎ𝑛𝑄) − ∫ 𝑢(𝑓 ∗)𝑑𝑃
ℎ𝑛

− ∫ 𝑢(𝑓 ∗)𝑑(𝑄 − 𝑃 )

≤
𝑊 ((1 − ℎ𝑛)𝑃 +𝑄ℎ𝑛) −𝑊 (𝑃 )

ℎ𝑛
− ∫ 𝑢(𝑓 ∗)𝑑(𝑄 − 𝑃 )

≤ ∫ 𝑢(𝑓 ∗
𝜀𝑛
)𝑑(𝑄 − 𝑃 ) +

𝜀𝑛
ℎ𝑛

− ∫ 𝑢(𝑓 ∗)𝑑(𝑄 − 𝑃 ).

hen since we have robustness it follows that 𝑓𝜀ℎ𝑛 → 𝑓 ∗. Indeed,
because the optimal act is unique, by Theorem 2 and Corollary 7.17
in Dal Maso (1993), any convergent subsequence (𝑓𝜀ℎ𝑛𝑘

)𝑘 converges to
𝑓 ∗, which implies that 𝑓𝜀ℎ𝑛 → 𝑓 ∗. Hence we find that

∫ 𝑢(𝑓 ∗
𝜀ℎ𝑛

)𝑑(𝑄 − 𝑃 ) +
𝜀ℎ𝑛
ℎ𝑛

− ∫ 𝑢(𝑓 ∗)𝑑(𝑄 − 𝑃 ) → 0.

ndeed, by Lemma 5

𝑢(𝑓 ∗
𝜀ℎ𝑛

)𝑑(𝑄 − 𝑃 ) → ∫ 𝑢(𝑓 ∗)𝑑(𝑄 − 𝑃 ),

o that

𝑢(𝑓 ∗
𝜀ℎ𝑛

)𝑑(𝑄 − 𝑃 ) +
𝜀ℎ𝑛
ℎ𝑛

− ∫ 𝑢(𝑓 ∗)𝑑(𝑄 − 𝑃 ) → 0.

ince this holds for any ℎ𝑛 ↓ 0, we can conclude that

im
ℎ↓0

𝑊 ((1 − ℎ)𝑃 +𝑄ℎ) −𝑊 (𝑃 )
ℎ

= ∫ 𝑢(𝑓 ∗)𝑑𝑄 − ∫ 𝑢(𝑓 ∗)𝑑𝑃 . □

roof of Proposition 3. First, since 𝐶 is weak∗-compact, there are
1, 𝑄2 ∈ 𝐶 such that

sup
∈𝐶 ∫ 𝑢(𝑓1)𝑑𝑄 = ∫ 𝑢(𝑓1)𝑑𝑄1,

nd sup𝑄∈𝐶 ∫ 𝑢(𝑓2)𝑑𝑄 = ∫ 𝑢(𝑓2)𝑑𝑄2. It follows that for 𝑖 = 1, 2 there
exist 𝑓 𝐸 𝑥 ∈ 𝐹 𝑖 such that 𝑓 𝐸 𝑥 ≽ 𝑔, for all 𝑔 ∈ 𝐹 𝑖 . Because
𝑖 𝑖 𝑖 𝑄𝑖 𝑖 𝑖 𝑖 𝑖 𝐶
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∫ 𝑢(𝑓1)𝑑𝑃1 = ∫ 𝑢(𝑓2)𝑑𝑃2, 𝑚(𝑢, 𝑃1, 𝐹 ) ≥ 𝑚(𝑢, 𝑃2, 𝐹 ) ⟺ ∫ 𝑢(𝑓1)𝑑𝑄1 ≥
∫ 𝑢(𝑓2)𝑑𝑄2. Moreover, by assumption ≽1 and ≽2 admit certainty equiv-
alents. Therefore, there exist 𝑥, 𝑦 ∈ 𝑋 such that 𝑓1𝐸1𝑥1 ∼1 𝑥 and
𝑓2𝐸2𝑥2 ∼2 𝑦, so that

∫ 𝑢(𝑓1)𝑑𝑄1 = ∫ 𝑢(𝑓1𝐸1𝑥1)𝑑𝑃1 = 𝑢(𝑥),

and

∫ 𝑢(𝑓2)𝑑𝑄2 = ∫ 𝑢(𝑓2𝐸2𝑥2)𝑑𝑃2 = 𝑢(𝑦),

from which the result follows.

Proof of Proposition 4. Observe that

− sup
𝑄∈𝐶 ∫ 𝑢(𝑓 ∗)𝑑𝑄 = inf

𝑄∈𝐶 ∫ −𝑢(𝑓 ∗)𝑑𝑄.

It follows that one can use Theorem 1 in Luenberger (1997) (p. 217).
Indeed, note that all the assumptions of this result are satisfied: the
map 𝑄 ↦ ∫ −𝑢(𝑓 ∗)𝑑𝑄 is affine and thus convex, 𝐶 is a convex subset
of 𝑐𝑎(𝛴) (by well known results), and 𝑅(𝑃‖𝑃 ) = 0 < 𝐾. Hence there
exists 𝜃 decreasing with 𝐾 such that

inf
𝑄∈𝐶 ∫ −𝑢(𝑓 ∗)𝑑𝑄 = inf

𝑄∈𝛥∫ −𝑢(𝑓 ∗)𝑑𝑄 + 𝜃𝑅(𝑄‖𝑃 ), for some 𝜃 ≥ 0.

Since the map 𝑠 ↦ −𝑢(𝑓 ∗(𝑠)) is a bounded measurable function, by
applying a well-known variational formula (e.g., see Dupuis and Ellis
(1997), Proposition 1.4.2, p. 27) then we obtain,

inf
𝑄∈𝛥∫ −𝑢(𝑓 ∗)𝑑𝑄 + 𝜃𝑅(𝑄‖𝑃 ) = −𝜃 log

(

∫ 𝑒
1
𝜃 𝑢(𝑓

∗)𝑑𝑃
)

,

o that

sup
∈𝐶 ∫ 𝑢(𝑓 ∗)𝑑𝑄 − ∫ 𝑢(𝑓 ∗)𝑑𝑃 = 𝜃 log

(

∫ 𝑒
1
𝜃 𝑢(𝑓

∗)𝑑𝑃
)

− ∫ 𝑢(𝑓 ∗)𝑑𝑃 .

s desired. □

roof of Proposition 5. The optimization problem for every 𝑃 ∈ 𝐶
with parameters (𝜇, 𝜎2) can be written as

(𝜇, 𝜎2) = max
𝑎∈[0,∞)

− 𝑒
𝜎2
2 −𝑎𝜇 − 𝑒𝑎−𝑐 .

The solution is given by the first order condition:

𝜇𝑒
𝜎2
2 −𝑎𝜇 = 𝑒𝑎−𝑐 .

e obtain the unique solution for 𝑃 with parameters (𝜇, 𝜎2)

𝑃 =
ln(𝜇) + 𝜎2

2 + 𝑐

𝜇 + 1
.

So, we have

𝑉
(

𝜇, 𝜎2
)

= −𝑒
𝜎2
2 −𝑎𝑃 𝜇 − 𝑒𝑎𝑃 −𝑐 .

ince the objective function is strictly increasing in 𝜇 and strictly
decreasing in 𝜎2, it is straightforward to see that

𝜕𝑉
(

𝜇, 𝜎2
)

𝜕𝜇
> 0, (11)

and
𝜕𝑉

(

𝜇, 𝜎2
)

𝜕𝜎2
< 0. (12)

t follows that 𝜎22 > 𝜎21 and 𝑉 (𝑃1) = 𝑉 (𝑃2) imply that 𝜇2 > 𝜇1. Moreover,
ogether (11) and (12) also imply that

sup
𝜇,𝜎2)

{

−𝑒
𝜎2
2 −𝑎𝑃 𝜇 − 𝑒𝑎𝑃 −𝑐

}

− 𝑉 (𝜇, 𝜎2) = 𝑒
𝜎2
2 −𝑎𝑃 𝜇 − 𝑒 ̄

𝜎2

2 −𝑎𝑃 �̄� .

Hence we obtain
𝑚(𝑣, 𝑃1, 𝐴) ≥ 𝑚(𝑣, 𝑃2, 𝐴)

𝜎21 −𝑎𝑃 𝜇1 ̄
𝜎2 −𝑎𝑃 �̄�

𝜎22 −𝑎𝑃 𝜇2 ̄
𝜎2 −𝑎𝑃 �̄�
105

⟺ 𝑒 2 1 − 𝑒 2 1 ≥ 𝑒 2 2 − 𝑒 2 2 ,
which is equivalent to

𝑒
𝜎21
2 −𝑎𝑃1𝜇1 − 𝑒

𝜎22
2 −𝑎𝑃2𝜇2 ≥ 𝑒 ̄

𝜎2

2 −𝑎𝑃1 �̄� − 𝑒 ̄
𝜎2

2 −𝑎𝑃2 �̄� ,

which in turn is implied by convexity of 𝑒𝑥 combined with (7). We can
therefore conclude that 𝑚(𝑣, 𝑃1, 𝐴) ≥ 𝑚(𝑣, 𝑃2, 𝐴) as desired. □

Proof of Proposition 6. It is enough to check that for 𝑖 = 1, 2 and
every 𝑄 ∈ 𝐶

lim
ℎ↓0

sup
𝛼∈[0,1]

Eℎ𝑄+(1−ℎ)𝑃𝑖𝑢(𝛼𝜔 + (1 − 𝛼)) − 𝐸𝑃𝑖𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖))
ℎ

= 𝐸𝑄𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖)) − 𝐸𝑃𝑖𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖)).

Indeed, this would imply that

𝑚(𝑢, 𝑃𝑖, 𝐹 ) = sup
𝑄∈𝐶

E𝑄𝑢(𝛼𝜔 + (1 − 𝛼)) − E𝑃𝑖𝑢(𝛼𝜔 + (1 − 𝛼)),

so that by applying the same reasoning as in Proposition we get that
there exists 𝜃 ≥ 0 decreasing with the size 𝐾 of the neighborhood 𝐶
such that

sup
𝑄

E𝑄∈𝐶𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖)) = 𝜃 log
(

E𝑃 𝑒
1
𝜃 𝑢(𝛼𝑖𝜔+(1−𝛼𝑖))

)

,

from which the desired result follows.
To prove the claim, note that we have the following inequality for

any ℎ𝑛 ↓ 0

Eℎ𝑛𝑄+(1−ℎ𝑛)𝑃𝑖𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖)) − 𝐸𝑃𝑖𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖))
ℎ𝑛

≤ sup
𝛼∈[0,1]

Eℎ𝑛𝑄+(1−ℎ𝑛)𝑃𝑖𝑢(𝛼𝜔 + (1 − 𝛼)) − 𝐸𝑃𝑖𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖))
ℎ𝑛

,

so that,

E𝑄𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖)) − E𝑃𝑖𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖))

= lim
𝑛→∞

Eℎ𝑛𝑄+(1−ℎ𝑛)𝑃𝑖𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖)) − E𝑃𝑖𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖))
ℎ𝑛

≤ sup
𝛼∈[0,1]

Eℎ𝑛𝑄+(1−ℎ𝑛)𝑃𝑖𝑢(𝛼𝜔 + (1 − 𝛼)) − E𝑃𝑖𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖))
ℎ𝑛

.

oreover, for any sequence (𝛼𝑛𝑖 )𝑛 of wealth allocations optimal for
𝑛𝑄+ (1−ℎ𝑛)𝑃𝑖 (they exist by compactness and continuity), because 𝛼𝑖
s the unique optimal allocation for the belief 𝛼, by the same reasoning
s in Proposition 1 it holds that 𝛼𝑛𝑖 → 𝛼𝑖 which implies

𝑄𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖)) − E𝑃𝑖𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖))

= lim
𝑛→∞

Eℎ𝑛𝑄+(1−ℎ𝑛)𝑃𝑖𝑢(𝛼
𝑛
𝑖 𝜔 + (1 − 𝛼𝑛𝑖 )) − 𝐸𝑃𝑖𝑢(𝛼

𝑛
𝑖 𝜔 + (1 − 𝛼𝑛𝑖 ))

ℎ𝑛

≥ sup
𝛼∈[0,1]

Eℎ𝑛𝑄+(1−ℎ𝑛)𝑃𝑖𝑢(𝛼𝜔 + (1 − 𝛼)) − 𝐸𝑃𝑖𝑢(𝛼𝑖𝜔 + (1 − 𝛼𝑖))
ℎ𝑛

.

so that

𝑚(𝑢, 𝑃𝑖, 𝐹 ) = sup
𝑄∈𝐶

E𝑄𝑢(𝛼𝜔 + (1 − 𝛼)) − E𝑃𝑖𝑢(𝛼𝜔 + (1 − 𝛼)),

as desired. □
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