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Abstract

We consider superhedging and no-arbitrage pricing in markets with a convex and
cash-additive structure and derive an explicit functional form for the super-replication
price. Using convex duality methods, we show that the superhedging price maximizes
the difference between the expected payoff and a confidence function that accounts for
the reliability of the probability used in pricing. We demonstrate that the existence
of a strictly positive probability within the domain of the confidence function, which
maximizes the super-replication price for a specific payoff and acts as a lower bound
for all other payoffs, is necessary and sufficient to prevent arbitrage opportunities.
Furthermore, we explore entropy pricing as a notable example of a super-replication
pricing functional and provide conditions on the market structure under which the
super-replication price takes the form of entropy pricing. We show that the confidence
function in entropy pricing can be expressed using the Kullback-Leibler divergence.

1 Introduction

In financial markets, the order size can affect a security’s price per unit, as many empiri-
cal studies show (Almgren, Thum, Hauptmann and Li 2005, Moro, Vicente, Moyano, Gerig,
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Farmer, Vaglica, Lillo and Mantegna 2009, Tóth, Lemperiere, Deremble, Lataillade, Kock-
elkoren and Bouchaud 2011, Bacry, Iuga, Lasnier and Lehalle 2015, and Donier and Bonart
2015). This literature consistently demonstrate that the temporary price impact increases
approximately with the square root of the order size.

Lécuyer and Martins-da Rocha (2021) extend the fundamental theorem of asset pricing
in convex market structures to account for this phenomenon, showing that the price of a
security is convex in the quantity traded. Here, we add two natural assumptions to the model
studied by Lécuyer and Martins-da Rocha (2021). We assume the availability of a riskless
security and that the pricing functional is cash-additive. Cash-additivity is a well-known
postulate in Mathematical Finance that models the absence of frictions on the market for
riskless securities (Föllmer, Schied and Lyons 2004).

Our first main result, Theorem 3.2, shows that the resulting super-replication price has
an explicit functional form that depends on a confidence function α. It captures the highest
deviation from an idealized frictionless market, reflecting the unfavorable impact of market
friction on the pricing of a financial instrument. We also show that the super-replication
price is well-defined and continuous.

Our second main result, Theorem 3.3, shows that it is necessary and sufficient for the
super-replication price to be supported by a frictionless no-arbitrage price to satisfy the no-
arbitrage conditions. When the super-replication price is linear, this results in the standard
characterization of no-arbitrage.

In Section 4, we explore an important example of super-replication pricing, entropy pric-
ing, and provide conditions for the market structure such that the super-replication price has
an entropy pricing form. The main condition is segmented-additivity, a condition that states
that the value of a combined portfolio equals the sum of the values of its individual compo-
nents when those components yield non-zero payoffs in distinct, non-overlapping states of the
world. In this case, we show that the confidence function α is given by the Kullback-Leibler
divergence. This example provides a major tractable example of a super-replication price.

Overall, our results extend the fundamental theorem of asset pricing in convex market
structures, provide a framework to account for market impact, transaction costs, and taxes,
and offer insights into the super-replication price and its relation to the traditional concept
of no-arbitrage.

This article contributes to the growing body of literature that extends the fundamental
theorem of asset pricing (FTAP) to account for frictions present in financial markets such
as transaction costs, taxes, and market impact. The FTAP was first demonstrated in fric-
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tionless markets by Harrison and Kreps (1979). Subsequently, Jouini and Kallal (1995) and
Luttmer (1996) extended the FTAP to sublinear pricing rules. When markets are complete,
Cerreia-Vioglio, Maccheroni and Marinacci (2015) characterized a pricing rule satisfying
cash-additivity, monotonicity, and put-call parity. Burzoni, Riedel and Soner (2021) ex-
tended the FTAP further by introducing a more general setting that encompasses market
uncertainty. Under the assumption that the set of net trades is a convex cone, they show
that markets viability is equivalent to the existence of a pricing rule taking the form of a
lower semi-continuous sublinear martingale expectation with full support.

The pricing rules considered by Jouini and Kallal (1995), Luttmer (1996), Cerreia-Vioglio,
Maccheroni and Marinacci (2015), and Burzoni, Riedel and Soner (2021) are positively ho-
mogeneous, meaning that the size of an order executed in the markets does not modify the
unitary price of the order, i.e., unitary prices are constant in quantity traded. As a result,
these pricing rules cannot account for market impact, the fact that unitary prices actually
increase with the quantity traded.

Several other models exist that can account for market impact assuming the pricing
rule is convex. For example, Jouini and Kallal (1999) showed that a convex pricing rule
is viable if, and only if, there is no asymptotic free-lunch. Lécuyer and Martins-da Rocha
(2021) proposed a new approach making assumptions on the primitives of the model, the
market structure, which is the actual price paid for a portfolio, and the payoffs received.
They assumed the market structure is convex and determined the relevant concept of no-
arbitrage, which they called robust no-arbitrage. They also derived the super-replication
pricing rule from the primitives and show that it is convex. Moreover, it is viable (that is it
satisfies robust no arbitrage) if the market structure satisfies no robust arbitrage. However,
due to the generality of their model, they do not provide an explicit expression for the super-
replication pricing rule making it challenging to use in practice. Therefore, in this article we
address a special case of this model by assuming that a riskless asset is available and that
the market structure is cash-additive in addition to being convex.

Section 2.1 introduces the notation and the main mathematical objects used in the paper.
Section 2.2 presents the model and 3 contains the main results of the paper. Section 4
considers the special case of entropic pricing rules. The proofs are all in the Appendix.

3



2 Convex Cash-Additive Markets

2.1 Preliminaries

We use the following notations and definitions. Given a non-empty finite set K, we call
an element X ∈ RK a vector and we denote it by X = (X(k))k∈K or X = (Xk)k∈K . For
every X ∈ RK , we denote supp X := {k ∈ K : X(k) ̸= 0} the support of X, i.e. the set
of points at which X is non-zero. A vector X ∈ RK is nonnegative (strictly positive) when
X(k) ⩾ 0 (resp. X(k) > 0 ) for all k ∈ K. The set of nonnegative (strictly positive) vectors
is denoted by RK

+ (resp. RK
++). Given X ∈ RK , ∥X∥ denotes the standard Euclidean norm

of X. A function f : Rn → Rm is spaces), U ⊆ X is open, and F : U → Y . The Gateaux
derivative of a function f : Rn → Rm at X ∈ Rn in the direction Y ∈ Rm is defined as

f ′(X; Y ) = lim
h→0

f(X + hY ) − F (X)
h

.

We say that f is Gateaux differentiable if f ′(X; Y ) exists finite for every X and Y . A
function f : RK → R is sub-additive when f(X + Y ) ⩽ f(X) + f(Y ) for every X, Y ∈ RK ,
and positively homogeneous when f(λX) = λf(X) for every λ > 0 and X ∈ RK . Sub-
additive and positively homogeneous functions are called sublinear.

We let ∆(K) denote the set of probability measures defined on the probability space
(K, 2K). A probability P ∈ ∆(K) has full support if P (k) > 0 for every k ∈ K. Considering
two probabilities P, Q ∈ ∆(K), the notation P ≪ Q means that P is absolutely continuous
with respect to Q in the sense that for every A ⊆ K, we have Q(A) = 0 =⇒ P (A) = 0. The
expectation under P ∈ ∆(K) of a random vector X ∈ RK is denoted by EP [X] := P · X.

2.2 The Market

We consider two points in time: t = 0 and t = 1. The second point in time, t = 1, is
characterized by uncertainty, represented by a finite set Ω of possible states of nature. At the
point in time 0, agents can access financial markets, where a set of J securities is available
for trading. One of these securities is a riskless asset that pays 1 in every state of nature.

Agents can form portfolios of securities, denoted by θ ∈ RJ . The first coordinate of the
portfolio, θ1, represents the quantity of the riskless asset that is purchased (positive) or sold
(negative), while the remaining coordinates, θj for j ∈ J \ {1}, represent the quantities of
the other securities purchased or sold.
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We assume that portfolios are not subject to any restrictions, and their prices are repre-
sented by a function p : RJ → R. Here, p(θ) is the cost of trading portfolio θ at t = 0. A
mapping G : RJ → RΩ models the payoffs of portfolios, G(θ, ω) ∈ R denoting the payoff of
portfolio θ in state ω. The couple (p, G) is called a market structure.

Definition 2.1. The market structure (p, G) is

1. convex if p is a convex function satisfying p(0) = 0 and G(·, ω) is concave for every
ω ∈ Ω, and G(0) = 0,

2. cash-additive if it satisfies the following properties for all θ ∈ RJ and all k ∈ R:

p(θ + ke1) = p(θ) + k and G(θ + ke1) = G(θ) + k1Ω,

where 1Ω ∈ RΩ is the vector with all coordinates equal to 1 and e1 ∈ RJ is the vector
whose first coordinate is equal to 1 and all other coordinates are equal to 0.

Remark 2.1. We assume zero interest rates. Positive interests can easily be accommodated.

In Lécuyer and Martins-da Rocha (2021), the authors extend the fundamental theorem
of asset pricing for convex market structures. In this paper, we focus on the special case
where the market structure is cash-additive in addition to being convex. In the rest of the
paper, we thus maintain the following assumption.

Assumption 2.1. The market structure (p, G) is convex and cash-additive.

Cash-additivity has the important consequence that every payoff can be superhedged
because a trivial superhedge is given by a sufficiently large quantity of the riskless security.

Before we come to the fundamental theorem, let us discuss some archetypical markets
that are covered by our setup. The frictionless case, when both p and G are linear, is
naturally a particular case of our setup.

Example 2.1 (Transaction Costs). Consider the situation when the assets are traded at
bid-ask prices 0 ≤ qB

j ≤ qA
j and payoffs xj are linear for every asset j as discussed in Araujo,

Chateauneuf and Faro (2018) and the appendix of Beissner and Riedel (2019). The riskless
asset is frictionless with qB

1 = qA
1 = x1 = 1. Write θ+

j = max{θj, 0} and θ−
j = max{−θj, 0}

for the long and short positions, respectively. The price of a portfolio at time 0 is given by
the sublinear functional

p(θ) =
J∑

j=1

(
θ+

j qA
j − θ−

j qB
j

)
and the payoff is given by the linear functional G(θ) = ∑J

j=1 θjxj. △
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Example 2.2 (Incomplete and Ambiguous Markets). Ambiguous pricing rules have recently
been studied by Beissner and Riedel (2019) who develop the general theory of equilibrium
for such markets and Araujo, Chateauneuf and Faro (2012) discuss the structure of friction-
less parts of the market. Both papers immediately start with the (sublinear) superhedging
functional that we discuss below. △

Example 2.3 (Entropy Pricing). Consider the situation when there are three states of the
nature, Ω = {ω1, ω2, ω3}, three assets (J = 3) traded on the markets and the price of a
portfolio at time 0 is given by the functional

p(θ) = log
(1

3eθ1+θ2+θ3 + 1
3eθ1+2θ2+θ3 + 1

3eθ1+θ2+2θ3

)
,

for all θ ∈ RJ , while the payoffs of portfolios are linear and given by the mapping G(θ) =
(θ1 + θ2 + θ3, θ1 + 2θ2 + θ3, θ1 + θ2 + 2θ3). In this case, the market structure (p, G) describes
frictions only related to pricing. Not trading at time 0 is not costly, i.e. p(0) = log(1) = 0.
Moreover, we have that

p(θ + ke1) = log
(1

3e1+θ1+θ2+θ3 + 1
3e1+θ1+2θ2+θ3 + 1

3e1+θ1+θ2+2θ3

)
= log

((1
3eθ1+θ2+θ3 + 1

3eθ1+2θ2+θ3 + 1
3eθ1+θ2+2θ3

)
ek
)

= log
(1

3eθ1+θ2+θ3 + 1
3eθ1+2θ2+θ3 + 1

3eθ1+θ2+2θ3

)
+ k

=p(θ) + k.

Finally, observe that p is the composition of the convex function X 7→ log
(∑3

i=1
1
3eX(ωi)

)
with the linear function G(θ) = (θ1 + θ2 + θ3, θ1 + 2θ2 + θ3, θ1 + θ2 + 2θ3), so that it is convex
as well. Hence, we can conclude that (p, G) is convex and cash-additive. △

3 Arbitrage and the Fundamental Theorem

In this section, we give a definition of arbitrage for our market structures and provide a
version of the fundamental theorem of asset pricing. We adopt the following strengthening
standard notion of absence of arbitrage (e.g., see Ross (2005)).

Definition 3.1 (Robust no-arbitrage Lécuyer and Martins-da Rocha (2021)). The convex
market structure (p, G) satisfies the robust no-arbitrage property if p and G are Gateaux
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differentiable and there exists a portfolio θ0 ∈ RJ such that for any direction η ∈ RJ , the
conditions

G′
(
θ0; η

)
⩾ 0 and p′

(
θ0; η

)
⩽ 0,

imply

G′
(
θ0; η

)
= 0 and p′

(
θ0; η

)
= 0.

As discussed by Lécuyer and Martins-da Rocha (2021), this notion of no-arbitrage is a
stronger requirement than the standard no-arbitrage condition, but they coincide when p and
G are linear. Indeed, observe that when p and G are both linear, we have that p′(θ0; η) = p(η)
and G′(θ0; η) = G(η), so that the robust no-arbitrage condition becomes equivalent to

[G(η) ⩾ 0 and p(η) ⩽ 0] =⇒ [G(η) = 0 and p(η) = 0],

which is exactly the standard notion of the absence of arbitrage.
We introduce a new characterization of this robust no-arbitrage specific to the cash-

invariant case.

Theorem 3.1 (FTAP for convex and cash additive market structures). Consider a convex
market structure (p, G) such that both p and G are Gateaux differentiable. Then (p, G)
satisfies the robust no-arbitrage property if and only if there exists a measure µ ∈ ∆(Ω) with
full support such that for all portfolios θ ∈ RJ

EµG(θ) ≤ p(θ).

Notice that our characterization is stronger than that in Lécuyer and Martins-da Rocha
(2021) obtained for general convex market. Indeed, here µ is a probability measure—what
is commonly referred to as a martingale probability measure, while in their case it is only
restricted to be a strictly positive vector. Hence, convex cash additive market structures
have a majpr advantage compared to arbitrary convex market structure. We illustrate this
result in the following example.

Example 3.1 (Example 2.3 continued). In this case we have that the price function is

p(θ) = log
(1

3eθ1+θ2+θ3 + 1
3eθ1+2θ2+θ3 + 1

3eθ1+θ2+2θ3

)
,
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and a payoff function

G(θ) = (θ1 + θ2 + θ3, θ1 + 2θ2 + θ3, θ1 + θ2 + 2θ3).

Because x 7→ ex is convex, if we let µ = (1
3 , 1

3 , 1
3) then it holds that for every θ ∈ RJ

p(θ) ⩾ log
(

eθ1+ 2θ2+2θ3
3

)
⩾ θ1 + 2θ2 + 2θ3

3 = EµG(θ).

Hence, µ is a martingale measure with full support. By Theorem 3.1, since both p and G are
Gateaux differentiable, it follows that (p, G) satisfies the robust no-arbitrage property. △

3.1 Super-replication Prices and no-arbitrage

Rather than analyzing an agent’s optimal portfolio, we can focus directly on the cost at
time t = 0 required to implement a specific consumption plan at t = 1. More precisely, we
ask: what is the amount of initial resources the agent should allocate at t = 0 in order to
achieve a specified random consumption X at t = 1 through trading portfolios? The natural
approach is to determine the least expensive portfolio θ such that G(θ) ⩾ X.

Definition 3.2. The super-replication price associated with the market structure (p, G)
is the function πp : RΩ → R ∪ {−∞} defined by

∀X ∈ RΩ, πp(X) := inf{p(θ) : θ ∈ RJ and X ⩽ G(θ)}.

In this section, we study the super-replication functional in general and provide a dual
representation. Cash-additivity and convexity transfer from the market structure to the
super-replication price. Moreover, with finitely many values, every security is bounded, and
can thus be superhedged with cash. Due to cash-additivity, the super-replication price is
thus bounded above.

Proposition 3.1. If the market structure (p, G) is convex and cash additive, then the super-
replication price πp convex, monotone, continuous, and cash-additive in the sense that, for
every X ∈ RΩ and k ∈ R, we have

πp(X + k1Ω) = πp(X) + k.

Moreover, is finite, i.e. πp(X) < ∞.
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The properties of convexity, cash-additivity, and continuity of the super-replication price
enable us to derive a dual representation. Up to a sign convention, our super-replication
price is a convex risk measure and thus, it can be expressed as the maximum of expected
payoffs minus a confidence function over the set of probability measures, cf. Föllmer and
Schied (2016).

Theorem 3.2. For all payoffs X ∈ RΩ, the super-replication price πp satisfies

πp(X) = max
P ∈∆(Ω)

(EP (X) − α(P )), (1)

for a confidence function α : ∆(Ω) → R+ ∪ {+∞} given by

α(P ) = sup
X∈RΩ

(EP (X) − πp(X)).

It is well known that we can represent the super-replication price with respect to a
minimal confidence function. Let Aπp be the set

Aπp = {X ∈ RΩ s.t. π(X) ⩽ 0}.

Proposition 3.2. The confidence function αmin : ∆(Ω) → [0, ∞) given by

αmin (P ) = sup
X∈Aπp

EP (X),

is the minimal confidence function representing the super-hedging price πp, that is, every
confidence function α satisfying Equation 1 is such that α(P ) ⩾ αmin (P ) for all P ∈ ∆(Ω).

We take up our examples from above.

Example 3.2 (Example 2.1 continued). In the context of transaction costs, Araujo, Chateauneuf
and Faro (2018) show that the superhedging functional can be written as the supremum of
expected values over a polytope

Q = {Q1, . . . , Qn}

of extremal martingale measures Qk that satisfy

qB
j ≤ EQkxj ≤ qA

j

for j = 1, . . . , J . We thus have

πp(X) = max
Q∈Q

EQ(X).

△
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Example 3.3 (Example 2.3 continued). In Theorem 4.1 below, we show that given (p, G)
from Example 2.3, π is such that the confidence function α is given by the Kullback-Leibler
divergence, i.e. for Q ∈ ∆(Ω) given by Q(ω1) = Q(ω2) = Q(ω3) = 1

3 such that

α(P ) := R(P∥Q) =
∑
ω∈Ω

P (ω) log
(

P (ω)
Q(ω)

)
,

whenever P ≪ Q, and R(P∥Q) = +∞ otherwise. In this case, the further a probability is
from Q as measured by relative entropy, the lower its “weight”. In words, this confidence
function describes an investor who, in the pricing of payoffs, is most confident about Q ∈
∆(Ω) and is less confident about probabilities that are farther away from Q as measured by
the Kullback-Leibler divergence. △

The previous example shows that cash-additivity does not result in positive homogeneity
unlike in Example 3.2.

We now provide a version of the fundamental theorem of asset pricing for the super-
replication price.

Definition 3.3. The market structure (p, G) does not admit arbitrage if there exists a payoff
X0 ∈ RΩ such that for all payoffs X ∈ RΩ, we have

[X ⩾ 0 and πp(X + X0) − πp(X0) ⩽ 0] =⇒ X = 0.

We introduce a new characterization of no-arbitrage specific to the cash-invariant super-
replication price case. We say that a super-replication price is supported by a no-arbitrage
frictionless price if there exists a probability with full support in the domain of the confidence
function such that for every payoff, the expected value of the payoff with respect to this
probability is a lower bound of the super-replication price of the payoff.

Definition 3.4. We say that πp is supported by a no-arbitrage frictionless price if there
exist a payoff X0 ∈ RΩ and a probability µ ∈ ∆(Ω) such that

α(µ) = 0, πp(X0) = Eµ(X0),

and
πp(X) ⩾ Eµ(X) for all X ∈ RΩ.

Theorem 3.3 (FTAP for the super-replication price). The convex market structure (p, G)
does not admit arbitrage if and only there exists a martingale measure with full support.
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In particular, if the super-replication price πp is consistent with the absence of arbitrage,
then the price functional p is also supported by the same no-arbitrage frictionless price in
the sense that for all θ ∈ RJ such that G(θ) ⩾ X, we have

p(θ) ⩾ Eµ(X),

with µ the probability with full support such that πp(X0) = Eµ(X0) for some X0 ∈ RJ and
πp(X) ⩾ Eµ(X) for all X ∈ RΩ. We illustrate this result in the following two examples.

Example 3.4 (Example 3.2 continued). Suppose that Ω = {ω1, ω2, ω3} and consider the
confidence function

α(P ) =

0 for P ∈ C

+∞ P ̸∈ C,

where
C = {P ∈ ∆(Ω) : P (ω1) = 1

3 , P (ω2) + P (ω3) = 2
3}.

Let µ = (1
3 , 1

3 , 1
3) and X0 = (0, 1, 1). Then

πp(X0) = max
P ∈C

EP X0 = EµX0 = 2
3 .

Moreover, since
πp(X) = max

P ∈∆(Ω)
EP X,

for every X ∈ RΩ it holds that
πp(X) ⩾ EµX.

Hence by Theorem 3.1 we can conclude that πp is a no-arbitrage price. △

Example 3.5 (Example 2.3 continued). Suppose again Ω = {ω1, ω2, ω3}. Recall that in this
example the confidence function is given by the Kullback-Leibler divergence,

α(P ) = R(P∥Q) =
∑
ω∈Ω

P (ω) log
(

P (ω)
Q(ω)

)
,

whenever P ≪ Q, and R(P∥Q) = +∞ otherwise, where µ = (1
3 , 1

3 , 1
3).

Let X0 = (1, 1, 1) and Q = µ. Then πp(X0) = Eµ(X0) = 1 and moreover

πp(X) = max
P ∈∆(Ω)

EP X − R(P∥Q) ⩾ EµX − R(µ∥µ) = EµX,

for every X ∈ RΩ. Hence by Theorem 3.1 we can conclude that πp is a no-arbitrage price.
More in general, whenever α is given the Kullback-Leibler divergence with respect to

Q ∈ ∆(Ω) with full support, the martingale probability µ is given by Q. △
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4 Entropic super-replication price

Entropy pricing is very common in finance (e.g., see Buchen and Kelly (1996), Leitner
(2008) or the review in Zhou, Cai and Tong (2013) for a discussion of its relevance).

Definition 4.1. Given a probability Q ∈ ∆(Ω), the entropic super-replication price is given
by

π(X) = max
P ∈∆(Ω)

EP X − R(P ||Q),

where R(·∥·) is the Kullback-Leibler divergence, i.e.

R(P∥Q) =
∑
ω∈Ω

P (ω) log
(

P (ω)
Q(ω)

)
,

whenever P ≪ Q, and R(P∥Q) = +∞ otherwise.

Recall that due to a key duality result (e.g., see Dupuis and Ellis 2011), we have that

π(X) = max
P ∈∆(Ω)

EP X − R(P ||Q) = log(EQ(eX)). (2)

Observe that because of this duality result, it is immediate to check that π satisfies cash-
additivity. We provide a foundation for such π based on more primitive conditions on the
market structure (p, G). Here we think of p as assigning a price to each portfolio measured in
a logarithmic scale. Indeed, with relative entropy pricing prices are measured in a logarithmic
scale. Therefore, ep quantifies prices measured in the arithmetic scale.

Definition 4.2 (Segmented addivitity). The price functional p satisfies additivity for seg-
mented portfolios if for every θ, θ′ ∈ RJ

supp G(θ) ∩ supp G(θ′) = ∅ =⇒ ep(θ+θ′) = ep(θ) + ep(θ′) − 1.

Such a condition requires additivity of the price function (when prices are measured in
the arithmetic scale) to hold when two portfolios are “segmented” in an intuitive way: we
say that they are segmented when they have non-zero payoffs in different, non-overlapping
states of the world.

Say that the payoff mapping G is monotone if G(θ) ⩾ G(θ′) whenever θ ⩾ θ′. The price
functional p : RJ → R is said to be strictly monotone if for every θ, θ′ ∈ RJ

G(θ) ⩾ G(θ′) =⇒ p(θ) ⩾ p(θ′),

and p(θ) > p(θ′) if it further holds that G(θ)(ω) > G(θ′)(ω) for some ω ∈ Ω.
The next example illustrates segmented additivity.
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Example 4.1 (Example 2.3 continued). Let θ = (−1, 1, 0) and θ′ = (−1, 0, 1). Then G(θ) =
(0, 1, 0) and G(θ′) = (0, 0, 1). Therefore it holds that supp G(θ) ∩ supp G(θ′) = ∅.

Now observe that

ep(θ+θ′) = 2
3e + 1

3 = 1
3e + 1

3e + 4
3 − 1 = ep(θ) + ep(θ′) − 1.

In words, these two portfolios never pay a non-zero amount in the same state of the world.
Therefore, in this case the price of the portfolio θ + θ′ can be additively determined through
the formula in Definition 4.2. Moreover, in this case it is immediate to check that π(X) =
log
(∑3

i=1
1
3eX(ωi)

)
. Hence in this case we obtain:

π(X) = log
(
EQ

(
eX
))

= max
P ∈∆(Ω)

EP X − R(P ||Q),

where Q(ω1) = Q(ω2) = Q(ω3) = 1
3 . △

The following result generalizes the previous example.

Theorem 4.1. Suppose that |Ω| ⩾ 3. Assume that (p, G) is complete with G monotone and
linear. Further, assume that p is strictly monotone and satisfies segmented additivity. Then
there exists Q ∈ ∆(Ω) with full support such that

π(X) = max
P ∈∆(Ω)

EP X − R(P ||Q) = log
(
EQ

(
eX
))

,

for every X ∈ RΩ.1

Proof. See the Appendix.

It is important to note that this pricing functional also satisfies the additivity property

π(X + Y ) = π(X) + π(Y ),

whenever X and Y are independent in the probability space (Ω, 2Ω, Q). Such an additivity
property is particularly significant in the context of portfolio pricing, as it implies that
portfolios consisting of unrelated risks should be priced independently of one another.

Furthermore, entropy pricing exhibits strict convexity, leading to the inequality π(αX) <

απ(X) for every α ∈ (0, 1). This result can be attributed to the presence of market frictions.
Notably, Theorem 4.1 demonstrates that these frictions are only related to the price function
p and not to the payoff mapping G. Therefore, this result suggests that entropic pricing is
not suitable when frictions arise, for example, from taxes.

1The more general case in which α(P ) = aR(P ||Q) for some a > 0 can be dealt with by imposing the
additivity condition eap(θ+θ′) = eap(θ) + eap(θ′) − 1.
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5 Conclusion

This paper discusses hedging and the absence of arbitrage in convex cash-additive mar-
kets. We provide a version of the fundamental theorem of asset pricing in this setting. By
focusing on the super-replication prices, we introduce the concept of a confidence function
that reflects market frictions, such as transaction costs and taxes. As a major special case,
we characterize the case of entropy pricing super-replication functionals. Hence, our find-
ings extend traditional asset pricing frameworks to better accommodate real-world market
imperfections.

6 Appendix

6.1 Proofs

Proof of Theorem 3.1. By Theorem 3.3 in Lécuyer and Martins-da Rocha (2021) it fol-
lows that (p, G) satisfies robust no-arbitrage if and only if there exists a strictly positive
vector µ ∈ RΩ

++ and a portfolio θ⋆ ∈ RJ such that

p(θ) − p(θ⋆) ⩾ µ · [G(θ) − G(θ⋆)], (3)

for all θ ∈ RJ .
Hence, if we assume that (p, G) satisfies the no-arbitrage condition, then by (3) it follows

that if we set θ = θ⋆ − 1, then
1 ⩾

∑
ω∈Ω

µ(ω).

If we substitute into (3) θ = θ⋆ + 1, then by the same reasoning we obtain that

1 ⩽
∑
ω∈Ω

µ(ω).

We can therefore conclude that µ ∈ ∆(Ω).
Conversely, if there exists a martingale measure µ with full support such that for all

portfolios θ ∈ RJ

EµG(θ) ≤ p(θ),

then (3) holds with θ⋆ = 0, delivering the desired result.
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Proof of Proposition 3.1. Monotonicity of the super-replication price was showed in
Lécuyer and Martins-da Rocha (2021). First, we are going to show that πp is cash-additive
when (p, G) is cash-additive. Let X ∈ RΩ and k ∈ R. Then by definition,

πp(X + k1Ω) = inf{p(η) : G(η) ⩾ X + k1Ω}.

This is equivalent to

πp(X + k1Ω) = inf{p(θ) : G(θ) − k1Ω ⩾ X}.

By cash-additivity of G, we have

πp(X + k1Ω) = inf{p(θ) : G(θ − ke1) ⩾ X}.

We pose η1 = θ1 − k and ηj = θj for all j ∈ J \ {1}, then

πp(X + k1Ω) = inf{p(η + ke1) : G(η) ⩾ X}.

By cash-additivity of p, it is equivalent to

πp(X + k1Ω) = inf{p(η) + k : G(η) ⩾ X}.

Hence the desired result
πp(X + k1Ω) = πp(X) + k.

Now, we are going to show that the super-replication price only takes finite values. Let
k > 0, by cash additivity we have πp(k) = k. Assume there exists X ∈ RΩ such that
π(X) = −∞ and let X ′ = 2k − X. Since π does not take the value +∞, there exists α1 ∈ R
such that α > π(X ′). We have π(X) < −α but convexity of π implies that

π(k) ⩽ 1
2π(X ′) + 1

2π(X),

It is equivalent to
k ⩽

1
2α − 1

2α,

which contradicts the fact that k > 0. Hence, πp does not take the value −∞ on RΩ.

Proof of Theorem 3.2. Let α : RΩ → R ∪ {+∞} be the Legendre-Fenchel transform of
πp, that is

α(P ) := sup
X∈RΩ

(P · X − πp(X)).
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Observe that α(P ) ∈ [0, ∞] for every P ∈ ∆(Ω). To see this, observe that

α(P ) ⩾ P · 0 − πp(0) = 0.

The super-replication price π is convex, moreover, we showed that it only takes finite val-
ues and is continuous. The Fenchel-Moreau theorem states that a function is equal to its
biconjugate if it is proper2, lower semi-continuous and convex. Hence, in particular, it is
equal to its biconjugate if it is convex, continuous and only takes finite values. Hence, the
super-replication price is equal to

πp(X) = sup
P ∈RΩ

(P · X − α(P )).

We are going to show that α(P ) = +∞ if P is not a probability.
Assume first that P (ω) < 0 for some ω ∈ Ω and choose an arbitrary n > 0. Let

Xn = −n1ω where 1ω is the vector of RΩ with coordinate ω equal to 1 and 0 otherwise.
Lécuyer and Martins-da Rocha (2021) show that the super-replication price πp is monotone
hence since 0 ⩾ Xn we have 0 ⩾ π(Xn). Moreover, by construction, P · Xn = −nP (ω) > 0
hence we have

α(P ) ⩾ P · Xn − π(Xn) ⩾ P · Xn,

that is,
α(P ) ⩾ −nP (ω) > 0.

Since n can be arbitrarily large, we have α(P ) = +∞ when P (ω) < 0 for some ω ∈ Ω.
Now, assume that P ⩾ 0 and P is not a probability. First assume that ∑ω∈Ω P (ω) > 1

and choose an arbitrary k > 0. By definition, α satisfies

α(P ) ⩾ k
∑
ω∈Ω

P (ω) − π(k1Ω).

Cash-additivity implies

α(P ) ⩾ k

∑
ω∈Ω

P (ω) − 1
.

Since k was taken arbitrarily, it implies α(P ) = +∞ when P ⩾ 0 and ∑ωΩ P (ω) > 1.
Assume now that ∑ω∈Ω P (ω) < 1 and choose an arbitrary k > 0. Then, by definition, α

satisfies
α(P ) ⩾ −k

∑
ω∈Ω

P (ω) − π(−k1Ω).

2We say that a convex function f : Rn → R ∪ {−∞, +∞} is proper when f(X) < +∞ for at least one
X ∈ Rn and f(X) > −∞ for all X ∈ Rn.
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Therefore, by cash-additivity,

α(P ) ⩾ k

1 −
∑
ω∈Ω

P (ω)
.

Since k was taken arbitrarily, it implies α(P ) = +∞ when P ⩾ 0 and ∑ωΩ P (ω) < 1.
Hence, the super-replication price satisfies

πp(X) = sup
P ∈∆(Ω)

(EP (X) − α(P )),

where P is a probability. Since ∆(Ω) is a compact set and by the extreme value theorem, a
continuous function attains its supremum on a compact set, we obtain that

πp(X) = max
P ∈∆(Ω)

(EP (X) − α(P )),

as desired.

Proof of Proposition 3.2. The proof of this proposition is a small variation of the proof
of Föllmer and Schied (2016) Theorem 4.15. We write it for tractability. Let X ∈ RΩ and
let X ′ = X − πp(X)1Ω, then, we have

αmin(P ) ⩾ EP (X ′) = EP (X) − πp(X),

for all P ∈ ∆(Ω). Hence,

πp(X) ⩾ sup
P ∈∆(Ω)

(EP (X) − αmin(P )).

For all X ∈ RΩ, we want to construct QX ∈ ∆(Ω) such that

πp(X) ⩽ EQX
(X) − αmin(QX). (4)

as it would imply
πp(X) = max

P ∈∆(Ω)
(EP (X) − αmin(P )).

We fist fix X ∈ RΩ such that πp(X) = 0. The payoff X is not contained in the set

B = {X ∈ RΩ s.t. πp(X) < 0},
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which is open. Hence we can separate X and B, that is, there exists a non-zero continuous
linear functional ℓ on RΩ such that

ℓ(X) ⩾ sup
Y ∈B

ℓ(Y ).

Let Y ⩽ 0, by cash-additivity and monotonicity, −1Ω + λY ∈ B for all λ > 0. Hence,

ℓ(X) ⩾ ℓ(−1Ω) + λℓ(Y ).

It implies ℓ(Y ) ⩽ 0. Since ℓ is non-zero, there exists Y ∈ RΩ such that ℓ(Y ) < 0, moreover
since it is negative we have ℓ(Y −) < 0. Without loss of generality we can take Y such that
maxω∈Ω |Y (ω)| < 1 and we have ℓ(−1Ω − Y −) ⩽ 0. It implies ℓ(−1Ω) = ℓ(−1Ω − Y −) +
ℓ(Y −) < 0. We let QX be such that

EQX
(Y ) = ℓ(Y )

ℓ(1Ω) for all Y ∈ RΩ.

We have
αmin (QX) = sup

Y ∈Aπp

EQX
(Y ) ⩾ sup

Y ∈B
EQX

(Y ) = 1
ℓ(1Ω) sup

Y ∈B
ℓ(Y ).

Moreover, for all Y ∈ Aπp , we have Y − ϵ ∈ B for all ϵ > 0. Hence Aπp − ϵ ⊆ B for all ϵ > 0
which implies

αmin (QX) = 1
ℓ(1Ω) sup

Y ∈B
ℓ(Y ).

We have
EQX

(X) − αmin (QX) = 1
ℓ(1Ω)(ℓ(X) − sup

Y ∈B
ℓ(Y )) ⩾ 0 = πp(X).

By cash-additivity, for every Y ∈ RΩ, we can construct QY satisfying Equation 4 following
the same steps by letting X = Y − πp(Y )1Ω. It entails

πp(X) = max
P ∈∆(Ω)

(EP (X) − αmin (P )) for all X ∈ RΩ.

Moreover, αmin is the minimal confidence function satisfying Equation 1. Indeed, for
every α satisfying Equation 1, we have

α(P ) = sup
X∈RΩ

EP (X) − πp(X) ⩾ sup
X∈Aπp

EP (X) − πp(X) ⩾ αmin (P ),

for all P ∈ ∆(Ω).
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Proof of Theorem 3.3. We first show that if the market structure (p, G) does not admit
arbitrage then there exists a payoff X0 ∈ RΩ such that for all payoffs X ∈ RΩ, we have

[X ⩾ 0 and πp(X + X0) − πp(X0) ⩽ 0] =⇒ X = 0.

First, we assume that there is no arbitrage opportunity and we are going to show that there
exist a payoff X0 ∈ RΩ and a probability µ ∈ ∆(Ω) such that

α(µ) = 0, πp(X0) = Eµ(X0),

and
πp(X) ⩾ Eµ(X) for all X ∈ RΩ.

.
Lécuyer and Martins-da Rocha (2021) show that a lower-semicontinuous super-replication

price πp defined on a closed set is consistent with the absence of arbitrage if, and only if
there exist a payoff X0 ∈ RΩ and a strictly positive vector µ ∈ RΩ

++ such that

πp(X) − πp(X0) ⩾ µ · (X − X0), (5)

for all X ∈ RΩ. We can rewrite the condition as

πp(X + X0) − πp(X0) ⩾ µ · X.

for all X ∈ RΩ. Cash-additivity implies ∑ω∈Ω µ(ω) = 1. Hence, µ is a probability.
Taking X = 0 in Equation 5, it implies Eµ(X0) ⩾ πp(X0). Denote PX0 the probability

such that
πp(X0) = EPX0

(X0) − α(PX0).

We have
∇[Eµ(X0) − EPX0

(X0) + α(PX0)] = µ − PX0 ⩾ 0.

It implies µ = PX0 . Therefore α(µ) = 0 and πp(X0) = Eµ(X0). It entails that

πp(X) ⩾ µ · X (6)

for all X ∈ RΩ.
Conversely, assume that there exist a payoff X0 ∈ RΩ and a probability µ ∈ ∆(Ω) such

that
α(µ) = 0, πp(X0) = Eµ(X0),
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and
πp(X) ⩾ Eµ(X) for all X ∈ RΩ.

We are going to show that there is no arbitrage opportunity. Let X ∈ RΩ such that

X ⩾ 0 and πp(X + X0) − πp(X0) ⩽ 0.

We have
0 ⩾ πp(X + X0) − Eµ(X0) ⩾ Eµ(X + X0) − Eµ(X0) = Eµ(X).

Since µ > 0, we have 0 ⩾ Eµ(X) ⩾ 0. Hence X = 0.

6.2 Proof of Theorem 4.1

We introduce first preliminary definitions.

Definition 6.1. A function π : RΩ → R is

1 continuous if for every sequence (X)∞
n=0 in RΩ, limn Xn = X implies limn π(Xn) =

π(X);

2 disjoint exponential-additive if for every X, Y ∈ RΩ

supp X ∩ supp Y = ∅ =⇒ eπ(X+Y ) = eπ(X) + eπ(Y ) − 1;

3 translation invariant if π(X + k) = π(X) + k;

4 normalized if π(k) = k for every k ∈ R;

5 strictly monotone if X ⩾ Y =⇒ π(X) ⩾ π(Y ) and π(X) > π(Y ) if it further holds
that X(k) > Y (k) for some k.

The next novel key lemma characterizes functionals that admit an entropic representa-
tion.

Lemma 6.1. A functional π : RΩ → R satisfies (1)-(5) if and only if there exists Q ∈ ∆(Ω)
with full support such that

π(X) = max
P ∈∆(Ω)

EP X − R(P ||Q) = log(EQ(eX)),
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Proof of Theorem 4.1.
Sufficiency. Define πe : RΩ → R by πe(X) = eπ(X) − 1 for every X ∈ RΩ. Then conditions
(1), (2), and (5) imply that πe satisfies the conditions of Theorem 2 in Stanca (2020), so
that there exists Q ∈ ∆(Ω) and a continuous and strictly increasing function ϕ : R → R
satisfying ϕ(0) = 0 such that

πe(X) = EQϕ(X),

for every X ∈ RΩ. Moreover, Q must have full support because of (5). To see this, observe
that Q satisfies Q(A) = πe(1A) for every A ⊆ Ω.

Finally, observe that since π is normalized we obtain πe(k) = ϕ(k) = ek − 1 for every
k ∈ R. Hence, since ϕ−1(k) = log(k + 1), we obtain

π(X) = ϕ−1(πe(X)) = ϕ−1(EQϕ(X)) = log
(
EQ

(
eX
))

.

Hnece by Proposition 1.4.2 in Dupuis and Ellis (2011), we obtain that

π(X) = max
P ∈∆(Ω)

EX − R(P ||Q),

which concludes this part of the proof.
Necessity. We only prove disjoint additivity, as checking the necessity of the other conditions
is routine. Consider X, Y ∈ RΩ with supp X ∩ supp Y = ∅. We have

eπ(X+Y ) = EQ

(
eX+Y

)
= EQ

(
eXeaY

)
= EQ

(
eX1supp X

)
+ EQ

(
eY 1supp Y

)
− 1

= eπ(X) + eπ(Y ) − 1,

as desired.

Lemma 6.2. Assume that G is monotone, linear, G(RJ) = RΩ, and that p is strictly
monotone and satisfies segmented additivity. Then π satisfies (1)-(6).

Proof. We show that π satisfies (2) as the checking that the other properties are satisfied is
routine. Recall that the super-replication price is given by

π(X) = inf{p(θ) : θ ∈ RJ and X ⩽ G(θ)}.
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Take X, Y ∈ RΩ such that supp X supp Y = ∅. Since p is continuous, strictly monotone and
G is linear, monotone and satisfies G(RJ) = RΩ we can find portfolios θ̃ and θ̃′ such that

supp θ̃ ∩ supp θ̃′ = ∅,

G(θ̃) = X, G(θ̃′) = Y , p(θ̃) = π(X) and p(θ̃′) = π(Y ). It follows that

π(X + Y ) = inf{p(θ) : θ ∈ RJ , X + Y ⩽ G(θ)}

= inf{p(θ + θ′) : θ, θ′ ∈ RJ , supp θ ∩ supp θ′ = ∅, X = G(θ), Y = G(θ′)}.

Hence, because x 7→ ex is a strictly increasing and continuous function, and since supp G(θ)∩
supp G(θ′) = ∅ for any G(θ) = X, G(θ′) = Y , by segmented additivity we obtain

eπ(X+Y ) = exp
{
inf{p(θ + θ′) : θ, θ′ ∈ RJ , supp θ ∩ supp θ′ = ∅, X = G(θ), Y = G(θ′)}

}
= inf{ep(θ+θ′) : θ, θ′ ∈ RJ , supp θ ∩ supp θ′ = ∅, X = G(θ), Y = G(θ′)}

= inf{ep(θ) + ep(θ′) − 1 : θ, θ′ ∈ RJ , supp θ ∩ supp θ′ = ∅, X = G(θ), Y = G(θ′)}

= inf{ep(θ) + ep(θ′) : θ, θ′ ∈ RJ , supp θ ∩ supp θ′ = ∅, X = G(θ), Y = G(θ′)} − 1

= inf{ep(θ) : θ ∈ RJ , X = G(θ)} + inf{ep(θ′) : θ′ ∈ RJ , Y = G(θ′)} − 1.

We can therefore conclude that

eπ(X+Y ) = ep(θ̃) + ep(θ̃′) = eπ(X) + eπ(Y ),

as desired.

We can now deliver the proof of the result.

Proof of Theorem 4.1. By Lemma 6.2, π satisfies (1)-(5). Therefore the result follows by
applying Lemma 6.1.
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