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a b s t r a c t

I provide a novel simplified approach to Savage’s theory of subjective expected utility. Such an
approach is based on abstract integral representation theorems in the space of measurable functions.
The advantage of such an approach is that these results can be used to easily obtain variations on
Savage’s theorem, such as representations with state-dependent utility or probability measures that
can have atoms. Finally, I discuss how such an approach can be used in other settings such as decision
making under ambiguity.
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1. Introduction

Savage’s (1954, 1972) axiomatization of subjective expected
utility (SEU) is the cornerstone of decision making under uncer-
tainty. However, the predominant approach in the subsequent
literature on decision making under uncertainty is the so-called
Anscombe–Aumann (AA) framework. This predominance is due
to its analytical tractability compared to the Savage set-up. For
example, Machina and Schmeidler (1995) referring to Anscombe
and Aumann’s approach state

‘‘Since their article came out seven years after Savage’s book,
and was not even the first one to consider the mixed subjec-
tive/objective case [. . .] one may ask why it enjoys the repu-
tation that it does. The answer is the elegance and simplicity
of the Anscombe–Aumann characterization.’’ (p. 108)

One of the advantages of the AA framework is that it enables the
use of powerful techniques originating from functional-analysis.
This fact allows decision theorists to develop refinements and
modifications of the SEU model in the AA framework (e.g., Fish-
burn, 1970; Schmeidler, 1989; Gilboa and Schmeidler, 1989; Mac-
cheroni et al., 2006). For example, SEU can be obtained in the AA
set-up as a consequence of the representation theorem for lin-
ear functionals from Dunford and Schwartz (1958). The Choquet
expected utility representation uses the integral representation
theorem developed by Schmeidler (1986). The axiomatization of
variational preferences in Maccheroni et al. (2006) built on earlier
results due to Dolecki and Greco (1995).

In this paper, I show how one can obtain Savage-style repre-
sentation theorems by means of a functional analytic approach as
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in the AA framework. I provide abstract integral representation
theorems and then show how these can be used in a decision-
theoretic framework. To illustrate these results, let (Ω,F) be a
measurable space and consider a functional I on the space of
simple F-measurable functions. I provide conditions under which
I can be written as2

I(f ) =

∫
u(ω, f (ω))µ(dω), (1)

and

I(f ) =

∫
u(f (ω))µ(dω), (2)

for every bounded measurable function f . The key condition for
these results is the following additivity condition: if f , g are such
that {ω : f (ω) ̸= 0} ∩ {ω : g(ω) ̸= 0} = ∅ then I(f +

g) = I(f ) + I(g). In words, this assumption requires additivity
restricted to functions that have disjoint support. These integral
representation theorems are functional-analytic in the sense that
they rely on the use of the Radon–Nykodym theorem.

The advantage of such an approach is that it can be used in
axiomatic decision theory to readily obtain variations on Savage’s
SEU model. Using the representation in (1), I obtain a represen-
tation theorem for SEU with state-dependent utility. Moreover,
using (2), I obtain a version of Savage’s SEU model and show how
non-atomicity of the prior can be easily relaxed. From a math-
ematical perspective, these functional-analytic techniques have
the advantage of considerably simplifying Savage’s derivation of
expected utility.

Finally, I discuss how these results can be used for axiomatic
decision theory in different settings. To illustrate this point, I

2 For expositional purposes I do not discuss here the properties that the
family of functions u(ω, ·)ω∈Ω , and the measure µ must satisfy, nor what type
of uniqueness holds in the representation. See Section 2 for details.
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provide a general axiomatization of second order expected util-
ity (Grant et al., 2009; Strzalecki, 2011). In Klibanoff et al. (2019),
the representation in (2) is applied to obtain an axiomatization of
the smooth ambiguity model.

This paper is closely related to the mathematical literature
on integral representation theory, which extensively examined
the additivity condition discussed previously. In particular, the
present paper is related to the work of Martin and Mizel (1964).
The condition that allows the relaxation of non-atomicity of the
probability measure is taken from their paper. When translated
into preferences, such a condition is equivalent to the unlikely
atoms axiom from Mackenzie (2019). Section 4.3 briefly reviews
this literature in mathematics.

In decision theory, a similar approach to mine was adopted
by Wakker and Zank (1999) and Castagnoli and LiCalzi (2006).
Section 4.2 discusses their work and connections with the ax-
iomatic literature in decision theory.

1.1. Structure

Section 2 presents the main abstract integral representation
theorems. These are then applied in Section 3 to obtain differ-
ent Savage-style representation theorems in a decision-theoretic
framework. Section 3.2 contains a general axiomatization of sec-
ond order expected utility. Section 4 offers a discussion of the
main results with emphasis on potential further applications and
a discussion of the related literature. The Appendix discusses
extensions of the main results.

2. Integral representation theorems

2.1. Preliminaries

Consider a measurable space (Ω,F). B0(F, K ) denotes the set
of all simple F-measurable functions with range contained in
the interval K ⊆ R, where I assume that 0 ∈ K and that K
contains a positive number (K can be unbounded, for instance
K = R is allowed). Fix k̄ ∈ K such that k̄ > 0. B(F, K ) is
the set of all bounded F-measurable real valued functions with
range contained in K .3 ∆(Ω) is the set of all countably additive
probability measures defined on F , while ∆(Ω)na ⊆ ∆(Ω) is the
set of probability measures that are non-atomic, i.e. µ ∈ ∆na(Ω)
if for every A ∈ F such that µ(A) > 0, there exists B ∈ F such
that B ⊆ A and µ(A) > µ(B) > 0. If µ, λ ∈ ∆(Ω), write µ ≪ λ if
µ is absolutely continuous with respect to λ, i.e. for every A ∈ F ,
λ(A) = 0 H⇒ µ(A) = 0. Say that two measures µ and λ are
mutually absolutely continuous if µ ≪ λ and λ ≪ µ. A constant
k ∈ K denotes the constant function that takes the value k for
every ω ∈ Ω . As usual, a simple function f ∈ B0(F, K ) will be
written as f =

∑n
i=1 xi1Ai where (Ai)ni=1 is a partition of Ω . For a

singleton {ω}, for simplicity write 1ω in place of 1{ω}. For A ∈ F
and f ∈ B0(F, K ), f 1A denotes a function that takes the value f (ω)
for ω ∈ A and 0 for ω /∈ A. For any f ∈ B0(F, K ), let suppf denote
the support of the function f , i.e. suppf = {ω ∈ Ω : f (ω) ̸= 0}. A
functional I : B0(F, K ) → R is:

1 non-negative if I(f ) ≥ 0 for every f ∈ B0(F, K );
2 normalized if I(k̄) = 1;
3 monotone if f ≥ g implies I(f ) ≥ I(g) and strictly monotone

if for every A ∈ F and f , g ∈ B0(F, K ) such that I(k̄1A) > 0,
f (ω) > g(ω) for every ω ∈ A implies I(f 1A) > I(g1A);

4 disjoint additive if for every f , g ∈ B0(F, K ),

suppf ∩ suppg = ∅ H⇒ I(f + g) = I(f ) + I(g);

3 See Proposition 2 in the Appendix for a generalization of the main results
to vector-valued functions.

5 weakly scale-invariant if for every A ∈ F and every x ∈ K ,

I(k̄1A) = 0 H⇒ I(x1A) = 0;

6 strongly scale-invariant if for every A, B ∈ F and x ∈ K ,

I(k̄1A) = I(k̄1B) H⇒ I(x1A) = I(x1B);

7 continuous if for every sequence (fn)∞n=1 such that fn con-
verges to f pointwise and there exists m,M ∈ R such that
m ≤ fn(ω) ≤ M for every ω ∈ Ω then I(fn) → I(f );

8 non-atomic if for every finite set A ∈ F and x ∈ K it holds
that I(x1A) = 0.

Properties 1–3 are standard. Property 4 is the key condition of
this paper. It implies that if two sets A, B ∈ F are disjoint, then
I(x1A + x1B) = I(x1A) + I(x1B) for any x ∈ K . In particular, this
condition will allow the measure µ to be defined by µ(A) = I(k̄1A)
for every A ∈ F . This fact will be key for all the results in this
paper. Property 5 says that if the functional is zero at k̄1A then it
will remain zero for any rescaling x1A of k̄1A. Likewise, property
6 states that if I assigns the same value to k̄1A and k̄1B then
it will also assign the same value to any rescaling of the two
functions. Note that if I(0) = 0 (which will be true if property
4 holds), then 6 effectively implies 5. Moreover, observe that
both properties of scale invariance are implied by homogeneity
of degree 1 (i.e., I(αf ) = αI(f ) for every α ∈ R and function f ),
but clearly neither of them implies homogeneity. Property 7 is a
continuity assumption reminiscent of the bounded convergence
theorem for integrals. Property 8 will be key to guarantee that
the measure defined by A ↦→ I(k̄1A) is non-atomic.

2.2. Main results

The first result characterizes functionals that are non-negative,
normalized, disjoint additive, weakly scale-invariant and contin-
uous.

Theorem 1. I : B0(F, K ) → R is non-negative, normalized, disjoint
additive, weakly scale invariant and continuous if and only if there
exists u : Ω × R → R with u(·, x) measurable for all x ∈ R,
u(·, x) ≥ 0 µ-a.s. ∀x ∈ R, u(ω, 0) = 0, u(ω, k̄) = 1 for every
ω ∈ Ω and µ ∈ ∆(Ω) such that

I(f ) =

∫
u(ω, f (ω))µ(dω), (3)

where the mapping f ↦→
∫
u(ω, f (ω))µ(dω) is continuous.

Proof. I only prove the necessity of disjoint additivity (it is
straightforward to check the other conditions). If f , g ∈ B0(F, K )
satisfy suppf ∩suppg = ∅, then there exist a measurable partition
(Ai)N+M

i=1 of Ω such that f =
∑N

i=1 xi1Ai , g =
∑N+M

i=N+1 xi1Ai and
f + g =

∑N+M
i=1 xi1Ai . Therefore,

I(f + g) =

∫
u(ω, f (ω) + g(ω))µ(dω) =

∫ N+M∑
i=1

u(ω, xi)1Aiµ(dω)

=

N+M∑
i=1

∫
Ai

u(ω, xi)µ(dω)

=

N∑
i=1

∫
Ai

u(ω, xi)µ(dω) +

N+M∑
i=N+1

∫
Ai

u(ω, xi)µ(dω)

=

∫
u(ω, f (ω))µ(dω) +

∫
u(ω, g(ω))µ(dω),

as desired.
To show that the conditions are sufficient for the representa-

tion, define µ : F → R by µ(E) = I(k̄1E) for every E ∈ F . I



L. Stanca / Journal of Mathematical Economics 87 (2020) 151–160 153

claim that µ ∈ ∆(Ω). To see this, note that since I is non-negative
µ(A) ≥ 0 for every A ∈ F . By disjoint additivity, for any A, B ∈ F
with A ∩ B = ∅, µ(A ∪ B) = I(k̄1A + k̄1B) = I(k̄1A) + I(k̄1B) =

µ(A)+µ(B). Moreover, disjoint additivity implies I(0) = 0 so that
µ(∅) = 0. Finally, take any decreasing sequence of measurable
sets (Ai)∞i=1 such that ∩

∞

i=1Ai = ∅. The sequence (k̄1Ai )
∞

i=1 is
uniformly bounded and converges pointwise to 0. By continuity,
limn→∞ µ(∩n

i=1Ai) = µ(An) = limn→∞ I(k̄1An ) = I(0) = 0.
Now define the measure vx by νx(E) = I(x1E) for every x ∈ K .

Using the same reasoning as above, we find that νx is a countably
additive measure. Moreover, since I is weakly scale invariant, νx is
µ-absolutely continuous for every x ∈ K . By the Radon–Nykodym
theorem (e.g., see Billingsley, 2008 Theorem 32.2) it follows that
there exist functions (gx)x∈K , all measurable such that I(x1E) =

νx(E) =
∫
E gx(ω)µ(dω). Moreover, gx ≥ 0 µ-a.s for every x ∈ K

and g0 = 0, gk̄ = 1. But then letting u(ω, x) = gx(ω) ∀ω ∈ Ω ,
for any f ∈ B0(F, K ) we get

I(f ) = I
(∑

i

xi1Ai

)
=

∑
i

I(xi1Ai )

=

∑
i

∫
Ai

gxiµ =

∫ ∑
i

1Aigxi (ω)µ(dω) =

∫
u(ω, f (ω))µ(dω),

as desired. □

The uniqueness of this representation theorem is weak, as
illustrated by the next result.

Proposition 1. There exist µ′
∈ ∆(Ω) and u′

: S × K →

R with u′(·, x) measurable for every x ∈ K such that I(f ) =∫
u′(ω, f (ω))µ′(dω) for every f ∈ B0(F, K ) if and only if µ ≪ µ′

and u′(ω, x) = u(ω, x) dµ
′

dµ (ω) µ′-a.s.

Proof. See the Appendix. □

In the proof of Theorem 1 the fact that set function defined
by µ(A) = I(k̄1A) is a measure relies on non-negativity of I . The
next integral representation theorem takes a different approach
by dropping non-negativity and imposing monotonicity, which
along with the other conditions will imply that µ is a measure.
Moreover, to obtain uniqueness of the representation I will also
require two additional conditions: strong scale-invariance and
non-atomicity.

As in Kopylov (2010), say that F is countably separated if it
contains a countable collection of events C ⊆ F such that for any
s, s′ ∈ S, there is E ∈ C such that s ∈ E and s ̸∈ E.

Theorem 2. Suppose that F is countably separated. I : B0(F, K ) →

R is normalized, disjoint additive, monotone, strongly scale invariant,
continuous and non-atomic if and only if there exist u : R → R
with u(0) = 0 and u(k̄) = 1, continuous and non-decreasing,
µ ∈ ∆na(Ω) such that

I(f ) =

∫
u(f (ω))µ(dω).

Moreover, u is strictly increasing if and only if I is strictly monotone.
Finally, the representation is unique.

Proof. It is routine to check the necessity of all the conditions.
As for sufficiency, again define µ : F → R by

µ(A) = I(k̄1A) ∀A ∈ F .

Note that since k̄ ≥ k̄1A ≥ 0, by monotonicity we have 1 =

I(k̄) = µ(Ω) ≥ µ(A) = I(k̄1A) ≥ I(0) = 0, so that 0 ≤ µ ≤ 1
and µ(Ω) = 1. The same reasoning as in the proof of Theorem 1
can now be used to show that disjoint additivity and continuity

imply that µ is countably additive. Finally, since I is non-atomic,
it follows that µ({ω}) = 0 for every ω ∈ Ω . Thus by Lemma
8 in Kopylov (2010) it follows that µ ∈ ∆na(Ω). Now for every
a ∈ K , define ϕa : F → R by

ϕa(A) = I(a1A) ∀A ∈ F .

Note that φa ≪ µ. To see this, note that by strong scale-
invariance and disjoint additivity if µ(A) = 0, then µ(A) =

I(k̄1A) = I(1∅) = 0 H⇒ I(a1A) = I(a1∅) = 0. Now similar
to the proof of Theorem 1.6 in Martin and Mizel (1964), I claim
there exists ρ : (0, 1] → R such that

ϕa(A) = ρ(µ(A))µ(A) ∀A ∈ F . (4)

To prove this claim, for any s ∈ [0, 1] let Q(s) = {A ∈ F :

µ(A) = s}. Since µ ∈ ∆na(Ω), Q(s) ̸= ∅ for every s ∈ [0, 1].
Let s ∈ (0, 1]. Then for any A, B ∈ Q(s), strong scale-invariance
implies ϕa(A) = ϕa(B) so that
ϕa(A)
µ(A)

=
ϕa(B)
µ(B)

,

from which (4) follows. Now I claim that ρ is (i) continuous and
(ii) satisfies the functional equation

(s+t)ρ(s+t) = sρ(s)+tρ(t) ∀s, t ∈ (0, 1] such that s+t ∈ (0, 1].

To see (i), without loss of generality consider a sequence (sn)n
in (0, 1] such that sn ↑ s ∈ (0, 1]. Then because µ ∈ ∆na(Ω),
by using Theorem 15 in Fryszkowski (2004) one can find an
increasing sequence (Sn)n of sets such that µ(Sn) = sn for every
n. Thus, letting S = limn→∞ Sn, we get µ(Sn) → µ(S) = s. Since
φa ≪ µ, it follows that φa(Sn) → φ(S). Hence ρ(sn) =

φa(Sn)
µ(Sn)

→

φa(S)
µ(S) = ρ(s). As for (ii), note that for any s, t ∈ (0, 1] such that
s + t ∈ (0, 1] it holds t ≤ 1 − s = µ(Ω \ S) where S ∈ Q(s). Thus
by non-atomicity one can find T ⊆ Ω \ S such that µ(T ) = t .
Therefore,

(s + t)ρ(s + t) = (µ(S) + µ(T ))
φa(S ∪ T )
µ(S ∪ T )

= φa(S) + φa(T ) = sρ(s) + tρ(t).

These two claims imply that ρ is constant. Indeed, for any s ∈

(0, 1] and natural number n it holds sρ( s
n ) = sρ(s) H⇒ ρ( s

n ) =

ρ(s). By the same reasoning, if m
n ∈ (0, 1], then ρ(mn s) = ρ(s) for

every s ∈ (0, 1]. By continuity of ρ it follows that ρ(t) = ρ(s) for
every s, t ∈ (0, 1].

Now define u : K → R by u(a) = I(a). By monotonicity and
continuity, u is continuous and non-decreasing. Also note that

u(a) = I(a) =
φa(Ω)
µ(Ω)

= ρa.

Now for any f ∈ B0(F, K ) we get

I(f ) = I
( n∑

i=1

1Aixi

)
= I

(
1Aixi

)
=

=

n∑
i=1

φxi (Ai) =

n∑
i=1

ρxiµ(Ai) =

n∑
i=1

u(xi)µ(Ai) =

∫
u(f (s))µ(ds),

as desired. Finally, it is straightforward to check that u is strictly
increasing if and only if I is strictly monotone. To see why unique-
ness holds, consider u′

: K → R and µ′
∈ ∆(Ω) such that

I(f ) =
∫
u′(f (ω))µ′(dω) for every f ∈ B0(F, K ). First note that for

every x ∈ K it holds that u′(x) = I(x) = u(x), so that in particular
u(0) = u′(0) = 0 and u(k̄) = u′(k̄) = 1. This implies that for every
A ∈ F , µ′(A) = I(k̄1A) = µ(A) so that µ′

= µ as desired. □

This representation can be easily extended to B(F, K ), when-
ever K is closed. For any f ∈ B(F, K ), take a sequence (fn)n that



154 L. Stanca / Journal of Mathematical Economics 87 (2020) 151–160

converges to f uniformly. Since u(fn(ω)) → u(f (ω)) for every
ω ∈ Ω and because m ≤ fn ≤ M for some constants m,M ,
since u is non-decreasing we obtain m ≤ u(fn) ≤ M . Thus by
the dominated convergence theorem

I(f ) = lim
n→∞

I(fn) = lim
n→∞

∫
u(fn(ω))µ(dω) =

∫
u(f (ω))µ(dω),

as desired. Furthermore, an extension to arbitrary measurable
functions could be obtained using the same techniques used
by Wakker (1993).

From a mathematical perspective, Theorem 2 is a generaliza-
tion of Theorem 1.6 in Martin and Mizel (1964).4 They obtain
the same representation except they start from a given mea-
sure space (Ω,F, µ) and study functionals defined on the set of
bounded measurable functions, i.e. I : L∞(Ω,F, µ) → R, thus
starting with a given measure µ (also assuming K = R). In their
representation theorem, they derive a unique continuous function
u : R → R such that

I(f ) =

∫
u(f (s))µ(ds).

It should be noted that this approach by no means relies on
F being countably separated.5 Furthermore, Proposition 2 in the
Appendix extends Theorem 2 in several ways (for example, u does
not have to be non-decreasing).

I now discuss how to relax the non-atomicity of the probability
µ. Using the same techniques as in Martin and Mizel (1964) (see
Theorem 1.11 in their paper) it is possible to allow µ to have
atoms. Their result is based on the following assumption. Given
the measure space (Ω,F, µ), by decomposing µ as

µ = µ∞ + µ0,

where µ∞ and µ0 are the non-atomic and atomic part, it has to
hold that µ∞(Ω) ≥ µ0(Ω). To translate such a condition in the
current setting, let

A = {ω ∈ Ω : I(k̄1ω) > 0}.

The assumption of non-atomicity of I can be weakened by re-
quiring that I(k̄1A) ≤

1
2 . Observe that if I admits a representation

as in Theorem 2, then I(k̄1A) = 0.

Theorem 3. Suppose that F is countably separated. I : B0(Σ, K ) →

R is a normalized, disjoint additive, monotone, strongly scale invari-
ant, continuous and satisfies I(k̄1A) ≤

1
2 if and only if there exist a

continuous and non-decreasing function u : R → R with u(0) = 0
and u(k̄) = 1, µ ∈ ∆(Ω) such that µ(A) ≤

1
2 and

I(f ) =

∫
u(f (ω))µ(dω).

Moreover, u is strictly increasing if and only if I is strictly mono-
tone. Finally, the representation is unique.

Proof. First I claim that A is a countable subset of Ω . By con-
tradiction, assume that A is uncountable. Then by letting An =

{ω ∈ Ω : I(k̄1ω > 1
n )}, it must be that A = ∪n≥1An. It follows

that there must be an N such that AN is uncountable. Hence we
can pick elements ω1, . . . , ωM from AN with M > N so that by
monotonicity I(k̄) ≥ I(k̄1

∪
M
i=1{ωi}

) =
∑M

i=1 I(k̄1ωi ) >
M
N > 1, a

contradiction.

4 With a different proof strategy, Cerreia-Vioglio et al. (2011b, Lemma 5.2),
re-discover Martin and Mizel’s theorem.
5 The same result could be obtained by assuming the following condition on

I: there is no A ∈ F such that I(k̄1A) > 0 and I(k̄1B) = 0 for every B ∈ F such
that B ⊆ A.

Now define µ : F → R by µ(E) = I(k̄1E) for every E ∈ F .
Given the previous claim, we can find an enumeration (ωi)∞i=1 of
the atoms of µ. Now we replicate the arguments in Martin and
Mizel (1964), Theorem 1.8. Let C = Ω \ A. Note that by disjoint
additivity for every f ∈ B0(F, K ) it holds that

I(f ) = I(f 1A + f 1C ) = I(f 1A) + I(f 1C ).

Observe that the functional defined by

f ↦→ I(f 1C ),

satisfies all the assumptions of Theorem 2 on the measurable
space (C,F ∩ C) where F ∩ C = {E ∩ C : E ∈ F}. Therefore,
there exists µ′

∈ ∆na(C) with µ′(E) = µ(E) for every E ∈ F ∩ C
and u : K → R continuous and non-decreasing with u(0) = 0
and u(k̄) = 1 such that for every f ∈ B0(F, K )

I(f 1C ) =

∫
C
u(f (ω))µ′(dω) =

∫
C
u(f (ω))µ(dω).

Now for each atom ωi in A, define ui : K → R by ui(x) =
I(xi1ωi )
I(k̄1ωi )

for every x ∈ K . For every f ∈ B0(F, K ), there exist atoms (ωj)∞j=1
in A such that f =

∑
∞

j=1 xj1ωj . By continuity and disjoint additivity
we have

I(f 1A) =

∞∑
i=j

I(xj1ωj ) =

∞∑
j=1

uj(xi)µ(ωj).

I now claim that ui = u for every i. This would conclude the
proof since it would follow that

I(f ) = I(f 1A + f 1C ) = I(f 1A) + I(f 1C )

=

∞∑
i=1

u(xi)µ(ωi) +

∫
C
u(f (ω))µ(dω)

=

∫
A
u(f (ω))µ(dω) +

∫
C
u(f (ω))µ(dω) =

∫
u(f (ω))µ(dω),

as desired. To prove the claim, first note that I(k̄1A) ≤
1
2 implies

µ(A) ≤ µ(C). Since µ ∈ ∆na(C), for every ωi there is Ci ∈

F ∩ C such that µ(Ci) = µ(ωi). Therefore strong scale-invariance
implies that

I(x1Ci ) = I(x1ωi ),

for every x ∈ K . It follows that

I(x1Ci ) = u(x)µ(Ci) = I(x1ωi ) = ui(x)µ(ωi) H⇒ u(x) = ui(x),

for every atom ωi and x ∈ K as desired. □

3. Applications to decision theory

In this section, the integral representation theorems just
proved are applied to axiomatic decision theory. First I consider
the usual Savage framework with real-valued bets. Then I con-
sider an application to decision making under ambiguity. In the
usual decision theoretic framework, Ω ≡ S is the state space,
endowed with σ -algebra F ≡ Σ of events. K ≡ X is the set of
monetary prizes, so that X ⊂ R is an interval that contains 0 and
a positive number. An act f is a simple function f : S → X , so that
the set of acts F can be identified with B0(Σ, X). fAg denotes the
act that equals f (s) for s ∈ A and g(s) for s ̸∈ A. As usual, constant
acts are identified by elements of X .

In the AA framework, the set of outcomes is the set ∆s(Z) of
simple lotteries over an arbitrary set Z and the set of AA acts is

FAA = {f ∈ ∆s(Z)S : f is measurable w.r.t. Σ and |f (S)| < ∞}.

A functional V defined on either F or FAA represents ≽ if

V (f ) ≥ V (g) ⇐⇒ f ≽ g,

for all acts f , g .
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3.1. Expected state-dependent utility

Consider a preference ≽ over F , the set of Savage acts. By using
Theorem 1, the first result of this section provides a version of
subjective expected utility with state-dependent utility. Consider
the following seven axioms.

P1 ≽ is complete and transitive.
P2 For every f , g, h, h′

∈ F and E ∈ Σ ,

fEh ≽ gEh H⇒ fEh′ ≽ gEh′.

P1–P2 are the same as Savage’s. The next axiom requires the
constant act that pays 0 to be the worst act.6

Worst outcome f ≽ 0, ∀f ∈ F with ȳ ≻ 0 for some constant
act ȳ ∈ X , ȳ > 0.

Given this axiom, say that an event A ∈ Σ is null if ȳA0 ∼

0. Note that this notion of null event is weaker than Savage’s.
The next condition requires null events to have no impact on
preference over acts.

P3′ A ∈ A is null H⇒ xAf ∼ yAf for all x, y ∈ X and f ∈ F .
Contrary to Savage’s P6, here the richness required is only that

there exist three disjoint non-null events.
P6′ There exist at least three disjoint non-null events

A1, A2, A3.
The last two axioms are regularity conditions.
Certainty equivalent For every f ∈ F there exists x ∈ X such

that f ∼ x.
Given a sequence (f )∞n=1 of acts, say that fn converges

preference-wise to f ∈ F if for every act g , g ≻ f implies that
there exists N such that n ≥ N H⇒ g ≻ fn and f ≻ g implies
that there exists N ′ such that n ≥ N ′

H⇒ fn ≻ g . .
Continuity If a sequence of acts (f )∞n=1 satisfies |fn(s) − f (s)| →

0 for every s ∈ S and for some m,M it holds m ≤ fn ≤ M for every
n, then fn converges preference-wise to f .

Theorem 4. ≽ satisfies P1, P2, P3′, P6′, worst outcome, certainty
equivalent and continuity if and only if there exists µ ∈ ∆(S) with
µ(Ai) > 0, i = 1, . . . , 3, u : S × X → R with u(·, x) measurable for
every x ∈ X, such that ≽ is represented by a continuous functional
V : F → R such that V (X) = V (F ) and

V (f ) =

∫
u(s, f (s))µ(ds),

where u(s, x) ≥ 0 µ-a.s., u(s, 0) = 0 and u(s, ȳ) = 1 Moreover, any
other µ′

∈ ∆(Ω) and u′
: S × K → R represent ≽ if and only if

µ ≪ µ′ and u′(s, x) = a dµ′

dµ (s)u(s, x)+b(s) µ′-a.s. where b : S → R
is such that

∫
b(s)µ(ds) < ∞.

The main step in the proof consists of applying Debreu’s 1959
representation theorem to obtain a disjoint additive functional
V : F → R that represents ≽. The result follows then by checking
that all the conditions from Theorem 1 are satisfied.

Proof. It is routine to check that all the axioms are necessary.
To show sufficiency, note that by P1, P2, P6′, worst outcome,

certainty equivalent and continuity we can apply Lemma 3 in the
Appendix and obtain a disjoint additive and continuous functional
V : F → R that represents ≽ with V (0) = 0 and V (F ) = V (X). By
the worst outcome axiom, we can normalize V so that V (ȳ) = 1
and V (f ) ≥ V (0) = 0 for every f ∈ F . Moreover, any other
functional W : F → R with the same properties satisfies W =

aV + b, for some constants a, b with a > 0.
Now I claim that V is weakly scale-invariant. Suppose that

V (ȳ1A) = 0. It follows that ȳA0 ∼ 0, i.e. A is null. By P3’ we get

6 The axiom could be generalized by requiring that there exists a worst act
(possibly different from the constant zero act). This would require an extension
of Theorem 1 similar to Proposition 2 in the Appendix.

that xAf ∼ 0 for every x ∈ X . This implies that V (x1A) = V (0) = 0
for every x ∈ X .

Hence by (1), we find that there exist µ ∈ ∆(S), u : S×X → R
with u(·, x) measurable for every x ∈ X , u(s, x) ≥ 0 µ-a.s.,
u(s, 0) = 0 and u(s, ȳ) = 1 such that

V (f ) =

∫
u(s, f (s))µ(ds) for every f ∈ F .

Moreover, since A1, A2, A3 are non-null it follows that V (ȳ1Ai ) > 0
which implies that µ(Ai) > 0 for i = 1, 2, 3.

Now suppose that ≽ is represented by a functional W (f ) =∫
u′(s, f (s))µ′(ds). Then by uniqueness W = aV + b. Thus W−b

a =

V , i.e.
W (f ) − b

a
=

∫
u′(s, f (s)) − b(s)

a
µ′(ds) =

∫
u(s, f (s))µ(ds),

where b : S → R is such that
∫
b(s)µ′(ds) = b. By Theorem 1,

µ ≪ µ′ and

u′(s, x) = a
dµ′

dµ
u(s, x) + b(s),

µ′-a.s. desired. The converse is straightforward. □

This representation allows for quadratic utility as illustrated in
the next example.

Example 1. Suppose that S = R endowed with Borel σ -algebra,
µ ∈ ∆(S) has a normal distribution, i.e. µ(A) =

1
√
2π

∫
1A(x)e−x2/2dx, K = R and

u(s, x) =

{
1 if x = 1,
x2s2 else .

Then the preference induced by V (f ) =
∫
u(s, f (s))µ(ds) for every

f ∈ F satisfies all the axioms required in Theorem 4.

Under the assumption that X = R, Theorem 12 in Wakker and
Zank (1999) provides axioms that imply that ≽ is represented by
a continuous function functional V : F → R such that

V (f ) =

∫
u(s, f (s))µ(ds),

where u(s, ·) is increasing and continuous for every s ∈ S and
µ is a non-atomic prior. Their result excludes the preferences
described in the previous example, but allows for other types of
state-dependent utility.

3.2. Savage-style representations

The next results use Theorems 2 and 3 to obtain a version
of Savage (1972) with a probability measure that can have atoms.

As in the standard Savage setting, say that A is null if fAg ∼ g
for every f , g ∈ F . Consider the following axioms on ≽.

Strong monotonicity For any A ∈ Σ non-null

x > y ⇐⇒ xAf ≻ yAg.

Strong monotonicity is the same as Savage’s P3 except x ≻ y
is identified with x > y. As a consequence of this axiom we can
fix x̄ ∈ X such that x̄ > 0 and x̄ ≻ 0.

P4 For every A, B ∈ Σ and x, y, x′, y′
∈ X such that x ≻ y,

x′
≻ y′it holds

xAy ≽ xBy H⇒ x′Ay′ ≽ x′By′.

P6 For every f , g ∈ F and x ∈ X such that g ≻ f , there
exists a Σ-measurable partition (Ai)ni=1 of S such that for every
i = 1, . . . , n, g ≻ xAif and xAig ≻ f .

P4 and P6 are exactly the same as used by Savage.
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Theorem 5. Assume that Σ is countably separated. ≽ satisfies
P1,P2,P4,P6, strong monotonicity and continuity if and only if there
exist µ ∈ ∆na(S), u : X → R continuous, strictly increasing and
with u(0) = 0, u(x̄) = 1, such that ≽ is represented by

V (f ) =

∫
u(f (s))µ(ds).

Moreover, V ′(f ) =
∫
u′(f (s))µ′(ds) represents ≽ if and only if µ =

µ′ and there exist a ∈ R++, b ∈ R such that u′
= au + b.

Proof. It is routine to check that all the axioms are necessary. As
for sufficiency, note that by Lemma 1 in the Appendix, P6 implies
that there exists a partition of S with three non-null events.
Moreover, by strong monotonicity and continuity Lemma 2 in the
Appendix implies that for every f ∈ F there exists x ∈ X such that
f ∼ x. Using P2 and continuity, Lemma 3 in the Appendix implies
that there exists a disjoint additive and continuous functional
V : F → R such that V (x̄) = 1 that represents ≽. By strong mono-
tonicity it is straightforward to verify that V is strictly monotone.
By P4 V is strongly scale-invariant. Indeed, if V (x̄1A) = V (x̄1B),
then x̄A0 ∼ x̄B0 which by P4 implies that xA0 ∼ xB0 for any
x ∈ X . By P6, the event {s} is null for every s ∈ S, which implies
that V is non-atomic. Thus by Theorem 2 it follows that there
exist u : X → R and µ ∈ ∆na(S) such that V =

∫
u(f (s))µ(ds).

As for uniqueness, if there exist u′
: X → R and µ′

∈ ∆(S) such
that f ↦→

∫
u′(f (s))µ′(ds) represents ≽, then there exist a ∈ R++,

b ∈ R such that

a
∫

u(f (s))µ(ds) + b =

∫
u′(f (s))µ′(ds).

It follows that
∫ (u′(f (s))−b)

a µ′(ds) =
∫
u(f (s))µ(ds). By uniqueness

in Theorem 2 it follows that u =
u′

−b
a and µ′

= µ. Thus u′
= au+b

as desired. The converse is straightforward. □

Thanks to Theorem 6, the non-atomicity of µ in the represen-
tation can be relaxed. As in Section 2, let

A = {s ∈⊆ S : {s} is not null}.

The condition that requires I(k̄1A) ≤
1
2 in Theorem 3 can be

translated to the following axiom that is equivalent to the one
introduced by Mackenzie (2019). In words, this axiom restricts
the likelihood of the set of atoms.

Unlikely atoms There exist x, y ∈ X with x > y such that
xS \ Ay ≿ xAy.

Theorem 6. Assume that Σ is countably separated. ≽ satisfies P1–
P5, strong monotonicity, unlikely atoms and continuity if and only
if there exists µ ∈ ∆(S) with µ(A) ≤

1
2 , u : X → R continuous

and strictly increasing and with u(0) = 0, u(x̄) = 1, such that ≽ is
represented by

V (f ) =

∫
u(f (s))µ(ds).

Moreover, V ′(f ) =
∫
u′(f (s))µ′(ds) represents ≽ if and only if µ =

µ′ and there exist a ∈ R++, b ∈ R such that u′
= au + b

Proof. See the Appendix. □

3.3. A general axiomatization of second order expected utility

Second-Order Expected Utility (SOEU) (see Grant et al., 2009;
Strzalecki, 2011) is a model that ranks each AA act f according to

V (f ) =

∫
φ(u(f (s)))µ(ds).

Such a criterion is consistent with Ellsberg-type behavior and
allows for sensitivity to the source of uncertainty. The function

φ models attitudes toward uncertainty, while u models attitudes
toward risk. A formulation of this criterion was first offered
by Neilson (1993) (see also Neilson, 2010, Theorem 1 and Cerreia-
Vioglio et al., 2012, Proposition 3). Grant et al. (2009) provide an
axiomatization with φ concave. As in Neilson (2010), I consider
a preference relation ≿ over the set FAA that satisfies Savage ax-
ioms for all acts and von Neumann–Morgenstern’s axioms when
restricted to constant acts.

P1 ≿ is complete and transitive.
A2 For every constant acts x, y, z ∈ X and α ∈ (0, 1]

x ≿ y ⇐⇒ αx + (1 − α)z ≿ y + (1 − α)z.

A3 For every f , g, h,∈ FAA the sets {α ∈ [0, 1]|αf + (1−α)g ≿
h} and {α ∈ [0, 1]|h ≿ αf + (1 − α)g} are closed.

P2 For every f , g, h, h′
∈ FAA and E ∈ Σ ,

fEh ≿ gEh H⇒ fEh′ ≿ gEh′.

P3 For any A ∈ Σ non-null

x ≻ y ⇐⇒ xAf ≻ yAg.

P4 For A, B ∈ Σ and x ≻ y, x′, y′ such that x ≻ y, x′
≻ y′it

holds

xAy ≿ xBy H⇒ x′Ay′ ≿ x′By′.

P5 ∃x, y ∈ X s.t. x ≻ y.
P6 For every f , g ∈ FAA and x ∈ X such that g ≻ f , there

exists a Σ-measurable partition (Ai)ni=1 of S such that for every
i = 1, . . . , n, g ≻ xAf and xAg ≻ f .

Finally, I require a continuity condition similar to the one
considered earlier.

Continuity If (fn(s))n converges preference-wise to f (s) for
every s ∈ S and for some x, y ∈ X it holds that x ≿ fn(s) ≿ y
for every s ∈ S, then fn converges preference-wise to f .

Theorem 7. Assume that Σ is countably separated. ≿ satisfies P1–
P6, A2–A3 and continuity if and only if there exists u : X → R with
[0, 1] ⊆ u(X), φ : u(X) → R continuous and strictly increasing with
φ(0) = 0 and φ(1) = 1 and µ ∈ ∆na(S) such that ≿ is represented
by V : FAA → R defined by

V (f ) =

∫
φ(u(f (s)))µ(ds).

Moreover, u is unique up to increasing affine transformations and
for a given u, µ is unique and φ is unique up to increasing affine
transformations over u(X).

The proof I provide combines the AA approach with the tech-
niques developed in this paper. In particular, usual arguments can
be used to show that there exist u : X → R and I : B0(Σ, u(X)) →

R such that ≿ is represented by

V (f ) = I(u(f )).

Savage’s axioms then imply that I satisfies all the conditions in
Theorem 5 are satisfied, so that there exists φ : u(X) → R such
that

V (f ) =

∫
φ(u(f (s)))µ(ds).

Proof. See the Appendix. □

The non-atomicity of µ can be relaxed by imposing the un-
likely atoms axiom as in Theorem 6.
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4. Discussion

4.1. Extensions further applications

The findings from the previous section are built upon the
assumptions of monetary consequences and countably additive
probabilities. The former assumption can be relaxed by consid-
ering vector-valued acts. Proposition 3 in the Appendix discusses
how to generalize Theorem 5 for this class of acts. The assumption
of countably additive probabilities could be relaxed by using
generalizations of the Radon–Nykodym theorem that hold for
finitely additive measures (e.g., see Maynard, 1979).

Schmeidler (1986) provides an integral representation theo-
rem (see also the earlier work by De Giorgi and Letta, 1977) in
which standard additivity is relaxed to comonotonic additivity,
i.e. additivity restricted to functions that are comonotonic. Two
measurable functions f , g are comonotonic if(
f (ω) − f

(
ω′

)) (
g(ω) − g

(
ω′

))
⩾ 0, ∀ω,ω′

∈ Ω.

Comonotonic additivity neither implies nor is implied by disjoint
additivity. A natural extension of the approach in this paper is
to consider integral representation theorems that combine these
two additivity conditions. For instance, one may want to restrict
additivity to functions that have disjoint support and are comono-
tonic. It is natural to conjecture that such a condition, along with
other appropriate ones, would lead to the representation in terms
of the Choquet integral

I(f ) =

∫
u(f (ω))v(dω), (5)

for every f ∈ B(F, K ), where ν : F → R is a capacity and∫
u(f (ω))v(dω) =

∫
∞

0
ν(u(f ) ≥ t)dt+

∫ 0

−∞

[ν(u(f ) ≥ t)−ν(S)]dt.

Gilboa (1987) provides an axiomatization of Choquet expected
utility (CEU) in a Savage setting. A representation as in (5) would
provide a way to axiomatize CEU with a different approach,
possibly allowing for generalizations such as state-dependent
utility.

A different setting in which these techniques can be applied
is to recursive models under ambiguity (see Strzalecki, 2013).
Here an act f denotes a plan, which is a collection of acts ft
representing state-contingent consumption at time t . Preferences
conditional upon (t, ω) are represented by a functional Vt (f , ω)
that satisfies the recursive relation

Vt (f , ω) = u (ft (ω))+ βφ−1(Eµφ(Vt+1(f , ·))).

In particular, when φ(x) = −e−
x
θ for θ > 0, this would lead to

the multiplier preferences of Hansen and Sargent (2001). These
and other generalizations are left to future research.

4.2. Connections with decision theory

As discussed earlier, the mathematical approach used in this
paper is connected to the work of Wakker and Zank (1999), who
also use the Radon–Nykodym theorem to derive an expected
utility representation. Their result can be seen as a generalization
of Theorem 2: by adding strict monotonicity and dropping strong
scale-invariance, I admits the representation

I(f ) =

∫
u(ω, f (ω))µ(dω),

where for all ω ∈ Ω , u(ω, ·) is continuous and strictly increas-
ing. Castagnoli and LiCalzi (2006) obtain an analogous represen-
tation and apply it to a procedure to rank real valued acts which
they call benchmarking.

Kopylov (2010) refines Savage’s theory when probabilities are
countably additive. Differently frommy approach, Kopylov’s tech-
niques are based on qualitative probability and in particular are
related to his earlier paper Kopylov (2007). Theorems 2 and 5
borrow from his approach based countably separated σ -algebras.

Mackenzie (2019) generalizes Villegas’s result to allow qual-
itative probabilities to be represented by probability measures
that can have atoms. His paper provides two separate condition
that relax non-atomicity: unlikely atoms and atom swarming.
Because I restrict the attention to countably separated σ -algebras,
the axiom I use in Theorem 6 is equivalent to his unlikely
atoms axiom. However, the axiom I use is actually based on
a condition developed by Martin and Mizel (1964), Theorem
1.8. Ha-Huy (2019) provides an axiomatization of expected utility
based on the atom swarming axiom. A condition in the spirit of
atom swarming also appears in Martin and Mizel (1964, p. 363,
Theorem 1.11). Abdellaoui and Wakker (2019) substantially gen-
eralize Savage’s theorem by replacing P6 with two axioms:
archimedeanity and solvability. They obtain a subjective expected
utility representation in which the probability satisfies a condi-
tion called range solvability.

As shown by Theorem 7, the results in this paper can be used
outside of a Savage setting. In a recent working paper, Klibanoff
et al. (2019) apply Theorem 5 to obtain an axiomatization of
the so-called smooth ambiguity model (Klibanoff et al., 2005)
under a symmetry assumption on preferences. Here the state
space has the product structure S = Ω∞, where Ω is a compact
metric space. In an AA framework, they show that by imposing
the Savage axioms only on acts that involve long-run frequency
events preferences are represented by

U(f ) =

∫
∆(Ω)

φ

(∫
u(f (s))ℓ∞(ds)

)
µ(dℓ),

where µ ∈ ∆(Ω) is a probability measures over marginal dis-
tributions (ℓ∞ is the i.i.d. process with marginal ℓ), u is a von
Neumann–Morgenstern utility function and φ is a continuous and
strictly increasing function on the range of u.

Finally, this paper is related to the literature on axiomati-
zations of quasi-linear means developed in the late 1920s and
the 1930s. The so-called Nagumo–Kolmogorov–De Finetti (see
Nagumo, 1930; Kolmogorov, 1930; De Finetti, 1931, as well
as Hardy et al., 1934) characterize quasi-linear means M : D[a, b]
→ R defined by

M(F ) = ψ−1
(∫

ψ(x)F (dx)
)
,

for every cumulative distribution function F on the interval [a, b].
See Muliere and Parmigiani (1993) and references contained
therein for a discussion of the literature.

4.3. Connections with integral representation theory

Several papers in mathematics have developed similar rep-
resentations to (1) and (2); see among many Martin and Mizel
(1964), Friedman and Katz (1966a), Friedman and Katz (1966b),
Mizel and Sundaresan (1968), Batt (1972), Palagallo (1976), Alò
et al. (1977) and Hiai (1979). Other results of this type can be
found in Buttazzo (1989) and Dal Maso (2012). These papers con-
sider notions of additivity analogous to disjoint additivity. How-
ever, they differ from mine in that I consider functionals defined
on the space of bounded and measurable functions, whereas this
literature typically uses spaces of either integrable or continuous
functions.
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Appendix

Recall that an event E ∈ Σ is non-null if there exist x ∈ X and
f ∈ F such that xEf ≻ f (when considering Theorem 4, non-null
means that ȳA0 ≻ 0).

Lemma 1. Suppose that ≽ over F satisfies P6. Then there exists a
partition of S with three non-null events.

Proof. This is a well-known fact; see for example (Fishburn, 1970,
C9, p. 195). □

Lemma 2. Suppose that ≽ over F satisfies strong monotonicity and
continuity. Then for every f ∈ F there exists x ∈ X such that f ∼ x.

Proof. For every f ∈ F , strong monotonicity implies that the sets
{x ∈ X : x ≽ f } and {x ∈ X : f ≽ x} are non-empty. By continuity,
they are both closed sets. Since X is connected, it follows that
{x ∈ X : f ≽ x} ∩ {x ∈ X : f ≽ x} ̸= ∅. Hence there must be x such
that x ∼ f . □

The next lemma uses arguments from the proof of Proposition
3 in Wakker and Zank (1999).

Lemma 3. Suppose that ≽ over F satisfies P1, P2, continuity, the
certainty equivalent axiom, there are at least three disjoint non-null
events and there exist k̄ ∈ X such that k̄ > 0 and k̄ ≻ 0. Then there
exists a continuous disjoint additive functional V : F → R such that
V (F ) = V (X), V (k̄) = 1 that represents ≽. Moreover, if W is another
functional representing ≽ with the same properties then V = aW+b
for scalars a, b with a > 0.

Proof. Since there are at least three disjoint non-null events, any
f ∈ F can be written as

f =

N∑
i=1

xi1Ai

where π = {A1, . . . , AN} is a partition of S with at least three non-
null events. Consider ≽ restricted to the set Xπ = {

∑N
i=1 xi1Ai :

(xi)Ni=1 ∈ XN
}. Since ≽ satisfies P1, P2 and continuity, we can apply

a well known result by Debreu (1959) and obtain continuous
functions VπAi : X → R such that

∑n
i=1 xi1Ai ↦→

∑N
i=1 V

π
Ai
(xi)

represents ≽ over Xπ and satisfying VπA (0) = 0,
∑N

i=1 V
π
Ai
(k̄) = 1.

Now for any two partitions π, π ′ of S with at least three non-
null events, by looking at the common refinement of the two
partitions the uniqueness result of Debreu’s implies that the value
of VπA is independent of the partition π . Hence, we can drop the
superscript π in VπAi .

Thus we can define the functional V : F → R by

V (f ) =

N∑
i=1

VAi (xi).

V represents ≽ on F . By the certainty equivalent axiom, V (X) =

V (F ). Moreover, if W is another representation of ≽ that satisfies
W (f ) =

∑N
i=1 WAi (xi) for every f ∈ F , then by standard arguments

it follows that W = αV + β for some constants α, β with α > 0.
Now I claim that V satisfies disjoint additivity. To see this, take

f , g ∈ F such that {s ∈ S : f (s) ̸= 0}∩{s ∈ S : g(s) ̸= 0} = ∅. Then
there exists a measurable partition (Ai=1)N+M

i=1 of S of non-null
events and N + M ≥ 3, such that

f =

N∑
i=1

xi1Ai ,

and

g =

M∑
i=N+1

xi1Ai .

Moreover, because f and g have disjoint support we can assume
that

f + g =

N+M∑
i=1

xi1Ai ,

so that

V (f + g) =

N+M∑
i=1

VAi (xi) =

N∑
i=1

VAi (xi)+
N+M∑
i=N+1

VAi (xi) = V (f )+ V (g),

as wanted. Finally, to see why V is continuous, let fn(s) → f (s)
for every s ∈ S and suppose that m ≤ fn ≤ M . By contradiction,
assume that for a subsequence (fnj )j, there is ε > 0 such that
V (fnj ) > V (f ) + ε for every j. Because of the certainty equivalent
axiom, we can find a constant act x with V (f ) < V (x) < V (f )+ ε.
By continuity of ≽ and since x ≻ f , there exists a natural number
k such that x ≻ fnj for all j ≥ k, contradicting V (fnj ) > V (x) for
all j. Hence, no such subsequence can exist. The same reasoning
can be used to show that there can be no ε > 0 such that
V (fnj ) < V (f ) − ε for every j. Hence, V (fn) must converge to V (f )
as desired. □

A.1. Proof of Proposition 1

Consider µ′ such that µ ≪ µ′. Let u′(ω, x) = u(ω, x) dµ
′

dµ (ω) ≥

0. Then I(f ) =
∫
u(s, f (ω))µ(dω) =

∫
u(s, f (ω)) dµ

′

dµ (ω)µ′(dω)
for every f ∈ B0(F, K ).

Conversely, consider u′
: Ω × K → R measurable for every

x ∈ K and µ′
∈ ∆(Ω) such that I(f ) =

∫
u′(ω, f (ω))µ′(dω). First

note that u′(ω, x) ≥ 0 µ′-a.s. for every x ∈ K . This implies that
µ ≪ µ′: if µ′(A) = 0, then µ(A) = I(k̄1A) =

∫
A u

′(ω, k)µ′(dω) = 0.
Finally,

∫
u′(ω, f (ω))µ′(dω) =

∫
u(ω, f (ω))µ(dω) =

∫
u(ω, f (ω))

dµ′

dµ (ω)µ′(dω) for every f ∈ B0(F, K ). It follows that∫
A
(u(ω, x)

dµ′

dµ
(ω) − u′(ω, x))µ′(dω) = 0,

for every A ∈ F and x ∈ K which implies u(ω, x) dµ
′

dµ (ω) = u′(ω, x)
µ′-a.s. for every x ∈ K as desired.

A.2. Proof of Theorem 6

It is routine to check that the axioms are necessary.
For sufficiency, first note that P6 is satisfied on S \ A. More

precisely, take x ∈ X and f , g ∈ F such that f ≻ g . Let A ⊆ F be
the class of event that can be partitioned into events A1, . . . , An
such that xAif ≻ g and f ≻ xAig for all i = 1, . . . , n. Clearly if
B, A ∈ A then B ∪ A ∈ A. Now I claim that S \ A ∈ A. Suppose
not. By applying Lemma 5 from Kopylov (2010), we get that there
exists a decreasing sequence (Ai)∞i=1 of subsets of S\A with Ai ∈ A
for every i such that ∩

∞

i=1Ai is either empty or a singleton. Thus
g ≽ xAif or xAig ≽ f for all i. Note that xAig and xAif converge
pointwise to g and f , possibly with the exception of one point
s ∈ S \ A, which is a null set since Ai is contained in S \ A for
every i. By continuity we get that g ≽ f , a contradiction. Thus
by Lemma 1 there are at least three disjoint non-null events.
By Lemma 3 we can construct a continuous, disjoint additive
functional V : F → R with V (x̄) = 1 that represents ≽. Moreover,
strong monotonicity and P4 imply that V is strictly monotone
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and strongly scale-invariant. Using unlikely atoms and P4 with
get that x̄S \ A0 ≽ x̄A0. It follows that

V (x̄1A) ≤ V (x̄1S\A) = 1 − V (x̄1A),

where the last equality follows by disjoint additivity. Hence we
get V (x̄1A) ≤

1
2 , so that by applying Theorem 3 we obtain the

desired result.

A.3. Proof of Theorem 7

It is routine to check that all the axioms are necessary.
For sufficiency, note that thanks to P1, A2 and A3 there exists

u : X → R affine and that represents ≿ over constant acts
(for example, see Cerreia-Vioglio et al., 2011a, Proposition 1).
Moreover, u can be chosen so that [0, 1] ⊆ u(X). Now define the
preference ≿∗ relation on B0(Σ, u(X)) by

ξ ≿∗ ζ if there exists f , g ∈ FAA such that u(f )
= ξ, u(g) = ζ and f ≿ g,

for every ζ , ξ ∈ B0(Σ, u(X)). It is routine to check that ≿∗ is a
well-defined weak order over B0(Σ, u(X)). I claim that ≿∗ satisfies
all the axioms in Theorem 5. To see why P2 is satisfied, take
ζ , ξ, ζ ′, ξ ′ and A ∈ Σ . Suppose that ζAζ ′ ≿∗ ξAζ ′. Then there
exist f , g, h, h′ such that ζAζ ′

= u(f )Au(h), ξAζ ′
= u(g)Au(h),

ξAξ ′
= u(g)Au(h′), ζAξ ′

= u(f )Au(h′) and fAh ≿ gAh. Since ≿
satisfies P2, it follows that fAh′ ≿ gAh′ which implies ζAξ ′ ≿∗ ξAξ ′

as desired. Showing that ≿∗ satisfies strong monotonicity, P4 and
P6 are proved with the same strategy. To see why continuity is
satisfied, suppose that ζn(s) → ζ (s) for every s ∈ S and for some
m,M m ≤ ζn(s) ≤ M for every s ∈ S. Take a sequence (fn)n that
satisfies u(fn) = ζn, so that x ≿ fn(s) ≿ y for some x, y ∈ X . Because
ζn(s) converges to ζ (s), fn(s) converges preference-wise to f (s) for
every s ∈ S. Thus by continuity fn converges preference-wise to f ,
which implies that ζn converges to ζ preference-wise as desired.

By Theorem 5 it follows that there exist µ ∈ ∆na(S) and φ :

u(X) → R continuous and strictly increasing with φ(0), φ(1) = 1
such that

V (ζ ) =

∫
φ(ζ (s))µ(ds) ∀ζ ∈ B0(S, u(X)).

Hence
f ≿ g ⇐⇒ u(f ) ≿∗ u(g)

⇐⇒

∫
φ(u(f (s)))µ(ds) ≥

∫
φ(u(g(s)))µ(ds),

as desired.
Uniqueness of the representation follows by Theorem 5.

A.4. A generalization of Theorem 2 with vector-valued functions

Suppose that K ⊆ V , where V is a topological vector space.
Here B0(F, K ) is the set of all the simple vector-valued functions
with range contained in K . To extend Theorem 2 it is necessary
to appropriately adapt the conditions on I to this more general
setting. Generalize monotonicity in the following way: say that
I is monotone if I(f (ω)) ≥ I(g(ω)) for every ω ∈ Ω implies
I(f ) ≥ I(g). To generalize the notion of a normalized functional,
say that I is normalized if there exist x, y ∈ K such that I(x) = 1
and I(y1A) = 0 for every A ∈ A. Say that I is strongly scale-
invariant if for every A, B ∈ F and z ∈ K , I(x1A + y1Ac ) = I(x1B +

y1Bc ) H⇒ I(z1A + y1Ac ) = I(z1B + y1Bc ). Continuity is extended
in a natural way: say that I is continuous if for every sequence
(fn)n in B0(F, K ) such that for some constant m,M it holds that
m ≤ I(fn(ω)) ≤ M for every ω ∈ Ω , fn(ω) → f (ω) for every ω ∈ Ω

implies I(fn) → I(f ). Say that I is non-atomic if I(z1A + y1Ac ) = 0
for every z ∈ K and finite set A. Finally, disjoint additivity needs

to be modified in the following way: for every f , g ∈ B0(F, K )
such that {ω ∈ Ω : g(ω) ̸= y} ∩ {ω ∈ Ω : f (ω) ̸= y} = ∅ it holds
that

I(f 1{ω:f (ω)̸=y} + g1{ω:g(ω)̸=y} + y1{ω:f (ω)=y,g(ω)=y})
= I(g1{ω:g(ω)̸=y} + y1{ω:g(ω)=y}) + I(f 1{ω:f (ω)̸=y} + y1{ω:f (ω)=y}).

Note that if y is the zero vector, then this notion reduces to the
original notion of disjoint additivity.

Proposition 2. Suppose that F is countably separated. I : B0
(F, K ) → R is normalized, disjoint additive, monotone, strongly
scale-invariant, continuous and non-atomic if and only if there exist
µ ∈ ∆na(Ω) and a continuous function u : X → R with u(x) = 1,
u(y) = 0 such that

I(f ) =

∫
u(f (ω))µ(dω).

Moreover, the representation is unique.

Proof. I briefly sketch that all the conditions are sufficient for
the representation. Define µ(A) = I(x1A + y1Ac ) and φz(A) =

I(z1A + y1Ac ). Observe that µ ∈ ∆na(Ω). To see this, note that
since I(x) ≥ I(x1A(ω) + y1Ac (ω)) ≥ I(y) for every ω ∈ Ω ,
monotonicity implies that 1 = µ(Ω) = I(x) ≥ I(x1A + y1Ac ) ≥ 0.
Disjoint additivity implies that µ(A ∪ B) = I(x1A∪B + y1Ac∩Bc ) =

I(x1A + x1B +y1Ac∩Bc ) = I(x1A +yAc )+ I(x1+y1Bc ) = µ(A)+µ(B).
Finally, non-atomicity implies that µ({ω}) = 0 for every singleton
{ω}. By the same reasoning, φz is a signed measure for every
z ∈ K . Moreover, by strong scale invariance φz ≪ µ for every
z. The proof then follows the exact same step as the proof of
Theorem 2. □

Whenever K is a connected subset of V , the previous result
can be used to extend Theorem 5 to these more general outcome
spaces. Let the set of outcomes X ⊆ V be a connected subset
of V and consider the set of simple acts F that map states in S
to consequences in X . Consider a relation ≽ on F . The following
axioms permit an extension of Theorem 5 to these general vector-
valued acts. Observe that these are exactly Savage’s axioms plus
the additional continuity condition.

P1 ≽ is complete and transitive.
P2 For every f , g, h, h′

∈ F and E ∈ Σ ,

fEh ≽ gEh H⇒ gEh′ ≽ gEh′.

P3 For any A ∈ Σ non-null

x ≻ y ⇐⇒ xAa ≽ yAb.

P4 For every A, B ∈ Σ and x, y, x′, y′
∈ X such that x ≻ y, x′

≻y′

it holds

xAy ≽ xBy H⇒ x′Ay′≽x′By′.

P5 There exist x, y ∈ X such that x ≻ y.
P6 For every f , g ∈ F and x ∈ X such that f ≻ g , there

exists a Σ-measurable partition (Ai)ni=1 of S such that for every
i = 1, . . . , n, g ≻ xAi f and xAig ≻ f .

Continuity If (fn)n is a sequence in F such that fn(ω) → f (s) for
all s ∈ S in the topology of V and for some x′, y′

∈ X it holds that
y′ ≽ fn(s) ≽ x′ for all s ∈ S, then (fn)n converges to f in preference.

Proposition 3. Suppose that Σ is countably separated. ≽ satisfies
P1–P6 and continuity if and only if there exist µ ∈ ∆na(S), u : X →

R continuous and strictly increasing and with u(x) = 1, u(y) = 0,
such that ≽ is represented by

V (f ) =

∫
u(f (s))µ(ds).

Moreover, V ′(f ) =
∫
u′(f (s))µ′(ds) represents ≽ if and only if µ =

µ′ and there exist a ∈ R++, b ∈ R such that u′
= au + b
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Proof. I briefly sketch the sufficiency of the axioms. Observe
that Lemma 3 can be applied to ≽ as long as X is connected
(see Wakker, 1989 Wakker, Theorem III.6.6 for a generalization
of Debreu’s result to arbitrary connected topological spaces). P1,
continuity and P3 imply that for every f ∈ F there exists x ∈ X
such that f ∼ x. Thus by Lemma 3 it possible to construct a
continuous and disjoint additive functional that represents ≽. The
remaining axioms can be used to show that V satisfies all the
condition in Proposition 2, which implies that V has the desired
representation. □
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