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Abstract
This paper investigates a novel behavioral feature of recursive preferences:

aversion to risks that persist over time, or simply correlation aversion. Greater
persistence provides information about future consumption but reduces oppor-
tunities to hedge consumption risk. I show that, for recursive preferences that
exhibit a preference for early resolution of uncertainty, correlation aversion is
equivalent to increasing relative risk aversion. To quantify correlation aversion,
I develop the concept of the persistence premium, which measures how much an
individual is willing to pay to eliminate persistence in consumption. I provide an
approximation of the persistence premium in the spirit of Arrow–Pratt, which
provides a quantitative representation of the trade-off between information and
hedging. I show that correlation-averse preferences have a variational represen-
tation, linking correlation aversion to concerns about model misspecification.
I present several applications. I first illustrate how correlation aversion shapes
portfolio choices, and then show how the persistence premium can improve the
calibration of macro-finance models. In an optimal taxation model, I show that
recursive preferences—unlike standard preferences—lead to redistributive tax
policies that increase social mobility.
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1 Introduction

Recursive preferences are of central importance in many economic applications, in-
cluding models of consumption-based asset pricing (Epstein and Zin, 1989, 1991),
precautionary savings (Weil, 1989; Hansen et al., 1999), business cycles (Tallarini,
2000), progressive taxation and inequality (Benabou, 2002), and risk-sharing (Ep-
stein, 2001; Anderson, 2005). Recursive preferences have also been applied to climate
change (Bansal et al., 2017; Cai and Lontzek, 2019), optimal fiscal policy (Karantou-
nias, 2018), and repeated games (Kochov and Song, 2023).

A key feature of recursive preferences is their ability to distinguish between risk
aversion and intertemporal substitution—two important preference parameters that,
for both theoretical and empirical reasons, should be disentangled. In this paper,
I show that recursive preferences also exhibit sensitivity to a third behavioral trait:
aversion to risks that persist over time. This trait, which has received less attention
in the past, plays a significant role in many economic applications.

I introduce a new axiom, which I call correlation aversion, that captures a prefer-
ence for avoiding risks that are correlated over time. Greater persistence in risks re-
duces the ability to hedge, which a risk averse decision maker (DM) dislikes. However,
increased correlation also means greater informativeness about future consumption.
This fact creates a trade-off between hedging and information, which is central to this
paper.

To illustrate, compare two gambles: in gamble A, a single coin flip at t = 1 de-
termines all future consumption (all 1’s or all 0’s), whereas in gamble B a fair coin is
tossed each period (yielding 1 or 0 each time). A hedging motive suggests a prefer-
ence for B over A, but A resolves all risk at t = 1, providing more non-instrumental
information about future consumption.1 Kreps and Porteus (1978) show that recur-
sive preferences imply a preference for early resolution of uncertainty, or equivalently,
non-instrumental information. Hence, the comparison is not straightforward: A re-
solves risk early, while B is preferred for its hedging value. My notion of correlation
aversion requires the hedging motive to outweigh the preference for non-instrumental
information, leading a DM to prefer B over A.

Correlation aversion, therefore, should presumably be reflected in a DM’s prefer-
1Here I refer to risk concerning consumption, not income; hence, early coin tosses offer no planning

advantage—information is non-instrumental.
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ences through a limited willingness to pay for non-instrumental information about
future consumption. I characterize correlation aversion for recursive preferences that
exhibit a preference for early resolution of uncertainty, showing that it is equivalent to
increasing relative risk aversion (IRRA). Consistent with the intuition, IRRA imposes
bounds on the demand for non-instrumental information, and a mild strengthening
of IRRA guarantees that recursive preferences admit a representation reflecting ro-
bustness to model misspecification.

Further, I introduce the persistence premium, a measure of correlation aversion
that reflects the willingness to pay to eliminate risk persistence. I derive an approx-
imation of this premium in the spirit of Arrow-Pratt that links correlation aversion
to preference parameters such as risk aversion and preference for non-instrumental
information.

I then apply these results to asset pricing and income taxation. I illustrate how
correlation aversion shapes portfolio choices and asset prices and how the persistence
premium improves macro-finance model calibrations. Finally, I show how correlation-
averse preferences shape progressive tax structures by increasing redistribution in a
way that promotes social mobility.

Preview of results
I consider recursive preferences characterized by three components (ϕ, u, β): ϕ re-
flects risk attitudes, u determines elasticity of intertemporal substitution (EIS), and
β captures time preference.

First, I re-frame preferences for early resolution of uncertainty in terms of the
Blackwell order of informativeness (Blackwell, 1951). A preference for early resolution
of uncertainty implies the DM prefers more informative lotteries (see the discussion
after Definition 3). Propositions 1 and 2 connect preferences for early resolution of
uncertainty with decreasing absolute risk aversion.

I then use this result to introduce a measure of attitudes toward early resolution of
uncertainty, which I refer to as ERϕ (see equation 4 and Appendix A.2). I develop a
foundation of this measure by providing an approximation of the early resolution pre-
mium, which quantifies the willingness to pay to have uncertainty resolve early. This
approximation shows that the premium depends positively on ERϕ (see Corollary 2).

Next, I introduce a novel definition of correlation aversion. More correlation adds
informativeness in the Blackwell sense (Proposition 3), creating conflicting incentives
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for a DM with recursive preferences, who prefers less persistent lotteries but values the
information. This result formalizes the key trade-off explored in this paper between
intertemporal hedging and non-instrumental information, as illustrated in the initial
example: A is more informative than B, but B provides better hedging value.

The main result, Theorem 1, shows that for a DM who prefers early resolution for
every possible value of β, correlation aversion is equivalent to ϕ satisfying IRRA. I
further show that IRRA limits how much a DM values non-instrumental information
(see equation 5). Notably, IRRA encompasses common recursive utility models like
Epstein-Zin.

To measure correlation aversion, I introduce the persistence premium, which quan-
tifies how much a DM is willing to pay to eliminate consumption persistence (see
equation 6). Using an approximation à la Arrow-Pratt I find a formula that connects
correlation aversion with risk aversion, EIS, persistence, and preference for informa-
tion.

To illustrate, in the Epstein–Zin case—where 1−α is the coefficient of relative risk
aversion, 1

1−ρ
is the elasticity of intertemporal substitution, and ε ∈ [0, 1] measures

consumption persistence—the premium is approximately given by

ã + b̃ ε
(

1 − α

ρ

)( 1
cH

+ 1
cL

)
− c̃ (ε2 − 1) ERϕ ,

where ã, b̃, c̃ > 0 and consumption can be either high (cH) or low (cL). Hence, the
premium rises with consumption persistence but at a decreasing rate. In particular,
higher risk aversion makes the premium increase more rapidly as ε grows, while
a higher ERϕ moderates this increase. Under IRRA, this result generalizes (see
Corollary 1 and the related discussion), formalizing the quantitative trade-off between
information and hedging.

To further clarify the role of risk attitudes, Theorem 2 shows that a mild strength-
ening of IRRA implies that recursive preferences admit a representation reflecting
robustness to model misspecification—a concern that future consumption distribu-
tions may be wrong. This result extends earlier work (e.g., Hansen et al. (1999))
that links multiplier preferences to robustness, generalizing it to all correlation-averse
preferences.

I then provide applications of these results.

Asset pricing. These results imply that correlation aversion significantly influences
portfolio choices at both individual investor and macroeconomic levels. At the in-
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vestor level, I discuss how risk preferences affect investment strategies. All other
things being equal, investors characterized by high relative risk aversion and a low
preference for information are more likely to favor bonds over stocks. Conversely, in-
vestors who exhibit a strong preference for information relative to their degree of risk
aversion will find stocks more attractive due to the news they provide about long-run
consumption growth.

At the macro-financial level, correlation aversion helps explain the equity premium
puzzle—the high observed excess returns investors require for holding equities. The
long-run risk model of Bansal and Yaron (2004), combined with Epstein-Zin prefer-
ences and persistent consumption growth, successfully matches the observed equity
premium. Theorem 1 implies that the equity premium is higher under Epstein-Zin
preferences because they exhibit IRRA and therefore correlation aversion, but despite
their preference for non-instrumental information.

This analysis highlights the need to calibrate preference parameters to achieve
a reasonable level of correlation aversion. Drawing inspiration from Epstein et al.
(2014), I introduce an analogue of the persistence premium in this macro-finance
setting which asks: “What fraction of your wealth would you sacrifice to eliminate all
persistence in consumption growth?” Using existing experimental evidence, I show
that—under standard parameters commonly used in the literature—the persistence
premium proves unreasonably high (see Section 4.1).

This issue arises because Epstein-Zin preferences do not fully disentangle risk aver-
sion from preferences for early resolution. To address this evidence, I explore a gen-
eralization of Epstein-Zin preferences to hyperbolic absolute risk aversion (HARA),
which partially separates these preference parameters (see equation (11)). I show
that these preferences can exhibit a level of correlation aversion comparable to the
standard Epstein-Zin parametrization used in the literature, but with a lower level of
risk aversion that is more consistent with empirical evidence. Hence, this new model
suggests that one can explain investors’ preference for bonds over stocks without
assuming unrealistically high risk aversion.

Income taxation and social mobility. Progressive income taxation is often viewed
as a key tool for addressing income inequality (Diamond and Saez, 2011). I show that
correlation aversion introduces social mobility as an additional motive for progressive
taxation. Under recursive utility with correlation aversion, I obtain a normative
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foundation for dynamic redistribution that takes the form of an “inheritance” tax:
redistribution goes from historically high human capital households to historically
low human capital ones. Correlation aversion would also favor other policies that
target persistent inequalities rather than just smoothing short-term shocks—such as
redistributive education financing.

I consider a simplified version of Benabou’s (2002) stochastic model of human capi-
tal accumulation. While standard discounted expected utility implies that the optimal
level of progressive taxation is largely unaffected by human capital persistence, re-
cursive utility with correlation aversion implies that greater persistence significantly
increases progressivity of the optimal income tax. Consequently, social mobility is
higher under correlation aversion (see Section 4.2).

The intuition is that higher inheritability of human capital increases consumption
persistence: individuals from historically high human-capital families tend to have
higher incomes and consumption, and vice versa. Correlation aversion therefore favors
reducing this persistence.

Related literature
The theoretical literature on dynamic choice has considered a notion of correlation
aversion derived from the literature on risk aversion with multiple commodities started
by Kihlstrom and Mirman (1974) (see also Richard 1975 or Epstein and Tanny 1980).
In particular, Bommier (2007) considers a notion of correlation aversion based on
the Kihlstrom and Mirman approach in a continuous time setting. Kochov (2015)
and Bommier et al. (2019) study the extension to a purely subjective setting of this
property, which they refer to as intertemporal hedging.

Intertemporal hedging involves comparing intertemporal gambles that do not differ
in terms of temporal resolution of uncertainty. Miao and Zhong (2015) and Andersen
et al. (2018) relate Epstein-Zin utility to an analogous notion of intertemporal hedg-
ing and provide experimental evidence in its favor. I show that within the class of
recursive preferences identified by (ϕ, u, β)—which I refer to as Kreps-Porteus (KP)
preferences—intertemporal hedging is equivalent to ϕ being concave, i.e. risk aversion
(see Section A.3).

I also consider the notion of strong correlation aversion, which strengthens IRRA
and implies a robust representation of preferences. Epstein and Zin’s (1989) prefer-
ences and Hansen and Sargent’s (2001) multiplier preferences satisfy this condition.
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Figure 1: Relationship between correlation averse (CA) preferences and other recur-
sive (KP) preferences: recursive preferences that satisfy intertemporal-hedging (IH),
Epstein-Zin (EZ) preferences, multiplier-preferences (HS), monotone recursive prefer-
ences (MON), preferences that exhibit a preference for early resolution of uncertainty
(PERU), and strong correlation aversion (SCA). HS preferences are the only ones
that exhibit all these features at the same time.

Meyer-Gohde (2019) first provided a connection between Epstein-Zin preferences and
model misspecification. Within the Kreps-Porteus setting, multiplier preferences are
the only ones to jointly satisfy strong correlation aversion, preference for early reso-
lution of uncertainty, and monotonicity as defined in Bommier et al. (2017). Figure
1 illustrates the relationship just discussed between correlation aversion and other
prominent classes of recursive preferences. I discuss the relationship of correlation
aversion with the work of DeJarnette et al. (2020) and Dillenberger et al. (2024) on
preferences that satisfy stochastic impatience in more depth in Section 5.

Similarly to Andreasen and Jørgensen (2020), I introduce a generalization of
Epstein-Zin preferences in order to disentangle risk aversion from attitudes toward
non-instrumental information. Their generalization is able to resolve puzzles in the
long-run risk model. The main difference with my approach is that they propose a
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more general form for the utility function u, while I propose a more general formula-
tion of ϕ.

Grant et al. (1998) also provide a connection between preference for non-instrumental
information and the Blackwell order in a setting in which preferences are defined over
two-stage lotteries (see also Dillenberger 2010). In their framework, each information
system induces a two-stage lottery. In contrast, in the present setting with tem-
poral lotteries, consumption in one period serves as a signal for information in the
subsequent period.

2 Preliminaries

Choice setting. I assume that time is discrete and varies over a finite horizon
2 ≤ T < ∞. The Supplemental Appendix (see Section S.1) describes the setting for
an infinite horizon, i.e., T = ∞. I assume that the consumption set C satisfies either
C = [0, ∞) or C = (0, ∞), depending on the specific recursive representation under
consideration. Given a Polish space X, let ∆s(X), ∆b(X) denote the space of simple
(i.e., finite support) and Borel probability measures with bounded support over X,
respectively. Observe that ∆s(X) ⊆ ∆b(X), and that both are convex spaces.

Given ℓ, m ∈ ∆b(X) such that ℓ is absolutely continuous with respect to m (de-
noted by ℓ ≪ m), I denote the Radon-Nikodym derivative by dℓ

dm
. For x ∈ X, let

δx ∈ ∆b(X) represent the Dirac probability, defined by δx(A) = 1 when x ∈ A and
δx(A) = 0 when x /∈ A. I denote with⊕n

i=1 πimi the convex combination of n probabil-
ities (mi)n

i=1 in ∆b(X) with a probability vector (πi)1≤i≤n. Note that every two-stage
lottery m ∈ ∆s(∆s(X)) can be associated to a matrix-vector pair (M [m], µ[m]) where
M [m] is a stochastic matrix whose rows describe each probability M [m](·|i) ∈ suppm

in the support of m for i = 1, . . . , |suppm|, and µ[m] is a probability row vector which
describes the probability of each i.

I consider temporal lotteries that are deterministic in the first period. Temporal
lotteries (Dt)T

t=0 are defined by DT := C and recursively, Dt := C × ∆b(Dt+1), for
every t = 0, . . . , T − 1. Likewise, simple temporal lotteries are defined by DT,s := C

and recursively
Dt,s := C × ∆s(Dt+1,s),

for every t = 0, . . . , T − 1. Simple temporal lotteries can be intuitively represented
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Figure 2: Probability tree representation of two temporal lotteries with T = 2

using a tree diagram, as illustrated in Figure 2.
I write (c0, (c1, m)) ∈ D0 for a temporal lottery that consists of two periods of

deterministic consumption, c0 and c1, followed by the lottery m ∈ ∆b(D2). More
generally, for any consumption vector ct = (c0, . . . , ct−1) ∈ Ct and m ∈ ∆b(Dt), the
temporal lottery (c0, (c1, (c2, (. . . , (ct−1, m))))) ∈ D0 or (ct, m) for brevity is one that
consists of t periods of deterministic consumption followed by the lottery m. Given
two Polish spaces X, Y and m ∈ ∆b(X × Y ) I denote with margX m the marginal
probability over X, i.e., margX m(A) = m(A × Y ) for every measurable set A ⊆ X.

Example 1. Assume T = 2. Let d = (c0, m) =
(
1, 1

2 (5, 10) ⊕ 1
2 (5, 0)

)
and d′ =

(c0, m′) = (1, 5, (1
210⊕ 1

20)). Figure 2 provides a graphical representation of these two
temporal lotteries. We have |suppm| = 2, |suppm′| = 1 and

M
[
marg∆s(D2,s) m′

]
=
[

1
2

1
2

]
and M

[
marg∆s(D2,s) m

]
=
1 0

0 1

 .

Moreover, µ[marg∆s(D2,s) m′] = [1] and µ[marg∆s(D2,s) m] =
[

1
2

1
2

]
. △

The preferences of a DM over temporal lotteries are given by a collection (⪰t)T
t=0

where each ⪰t is a weak order over Dt and ≻t denotes the asymmetric part of ⪰t. To
ease notation, I denote with ⪰:= (⪰t)T

t=0 the entire collection of preferences.

Definition 1 (Kreps-Porteus preferences). Preferences ⪰ admit a Kreps-Porteus
(KP) recursive representation (ϕ, u, β) if each ⪰t is represented by Vt : Dt → R
such that VT (c) = u(c) for every c ∈ C and recursively

Vt(c, m) = u(c) + βϕ−1 (Emϕ (Vt+1)) for t = 0, . . . , T − 1,
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where β ∈ (0, 1] is a discount factor, u : C → R is continuous and strictly increasing,
with image either u(C) = [0, ∞) or u(C) = (0, ∞), and ϕ : u(C) → R is a continuous
and strictly increasing function.

This representation of preferences separates risk aversion (captured by the function
ϕ) from the EIS (modeled by the utility function u). It is ordinally equivalent to more
common formulations used in applications (see, e.g., Werner (2024)). The axiomatic
foundations for this representation with bounded u are well known (e.g., Proposition
4 in Sarver 2018); the unbounded case can be covered by results from Bleichrodt
et al. (2008). The assumption of unboundedness is necessary for the characterization
provided later in Proposition 1. The parameter β is unique, whereas u is cardinally
unique, and ϕ is cardinally unique given u.2

Two notable cases are the Epstein–Zin (EZ) preferences, defined by

u(c) = cρ

ρ
, ϕ(x) = 1

α
(ρx)

α
ρ , c ∈ C, x ∈ u(C), (1)

with parameters 0 ̸= α < 1, ρ ∈ (0, 1), and α ≤ ρ; and the Hansen–Sargent (HS)
multiplier preferences, given by

ϕ(x) = − exp
(

−x

θ

)
, x ∈ u(C), (2)

with parameter 0 < θ < ∞.3

I will typically consider KP representations that satisfy certain differentiability
assumptions to employ standard tools from the theory of risk aversion. Write ϕ ∈ Cr if
ϕ has r continuous derivatives. Given ϕ ∈ C2, the Arrow-Pratt index Aϕ : int u(C) →
R is given by

Aϕ(x) = −ϕ′′(x)
ϕ′(x) for every x ∈ int u(C),

and the index of relative risk aversion is defined by Rϕ(x) = xAϕ(x) for every
x ∈ int u(C). A function ϕ is decreasing absolute risk averse (DARA) if Aϕ is

2In applied literature, the function ϕ is often referred to as risk adjustment; see, e.g., Hansen
et al. (2007). Moreover, β = 1 is permitted due to the finite horizon, which would not be the case
under an infinite horizon.

3Under the present taxonomy, EZ preferences do not overlap with HS preferences, but they
would if one allowed for ρ = 0; see for example Hansen et al. (2007), Example 2.3. In this case,
when C = (0, ∞) we have u(x) = log(x) and ϕ(x) = − exp (αx) where α = − 1

θ .
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non-increasing, it is increasing absolute risk averse (IARA) if its index Aϕ is non-
decreasing, and it is constant absolute risk averse (CARA) if it is both DARA and
IARA. Increasing (IRRA), decreasing (DRRA), and constant (CRRA) relative risk
averse functions are defined analogously by replacing the index Aϕ with Rϕ.

2.1 Preference for (non-instrumental) information

To formally model the trade-off between intertemporal hedging and non-instrumental
information, I reframe the theory of preferences for early resolution of uncertainty us-
ing the language of information economics. Temporal lotteries are partially ordered
using a version of the Blackwell order, which allows them to be compared in terms of
their (non-instrumental) informativeness. Beyond its theoretical appeal and general-
ity, this approach permits building a formal link between correlation and information,
which is central to the main results presented in the next section (see Proposition 3).

Similar to the Blackwell order, this ranking is based on the concept of garbling.
Consider m, m′ ∈ ∆s(∆s(X)) such that ∪ℓ∈suppmsuppℓ = ∪ℓ∈suppm′suppℓ, meaning
they have the same support over terminal outcomes. Then m′ is a garbling of m if
they can be associated with (µ[m], M [m]) and (µ[m′], M [m′]), where the columns of
M [m] and M [m′] represent the same outcomes, and there exists a stochastic matrix
G such that M [m′] = GM [m] and µ[m′]G = µ[m].

Definition 2 (Temporal Blackwell). Consider d, d′ ∈ D0,s such that d = (ct+1, m) , d′ =
(ct+1, m′) for some t ≤ T − 2, ct+1 ∈ Ct+1, and m, m′ ∈ ∆s(C × ∆s(Dt+2,s)) . Say
that d is more informative than d′, denoted d ≥B d′, if margC m′ = margC m and
marg∆s(Dt+2,s) m′ is a garbling of marg∆s(Dt+2,s) m.

In words, the expression d ≥B d′ means that the two lotteries, d and d′, have the
same distribution of consumption in period t + 1. However, the actual realization
of consumption in period t + 1 provides more information about future values of
consumption (from period t + 2 onwards) for the lottery d compared to the lottery d′.

Observe that ≥B is a partial order just like the standard Blackwell order. A full
characterization of this order is left for future research. A natural starting point would
be to adopt the methods from Kihlstrom (1984). The following examples illustrate
this notion of comparative information.
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Figure 3: Probability tree representation of a temporal lottery

Example 2 (Example 1 continued). Recall that here we have d =
(
1, 1

2 (5, 10) ⊕ 1
2 (5, 0)

)
and d′ = (1, 5, (1

210 ⊕ 1
20)). If we let G =

[
1
2

1
2

]

M
[
marg∆s(D2,s) m′

]
=
[

1
2

1
2

]
=
[

1
2

1
2

] 1 0
0 1

 = GM
[
marg∆s(D2,s) m

]
,

and
µ[marg∆s(D2,s) m′]G =

[
1
] [

1
2

1
2

]
=
[

1
2

1
2

]
= µ[marg∆s(D2,s) m].

Furthermore, margC m′ = margC m = δ5, so that d ≥B d′. In words, the terminal
value of consumption is fully revealed by a coin toss at t = 1 for d but only revealed
at t = 2 for d′. △

Example 3. Again assume T = 2. Consider d = (1, m), d′ = (1, m′) given by
d =

(
1, 1

2 (1, 1) ⊕ 1
2 (0, 0)

)
and d′ =

(
1, 1

2

(
1,
(

1
21 ⊕ 1

20
))

⊕ 1
2

(
0,
(

1
21 ⊕ 1

20
)))

. Figure
3 provides a graphical representation of these two temporal lotteries. We have

M
[
marg∆s(D2,s) m′

]
=
1

2
1
2

1
2

1
2

 =
1

2
1
2

1
2

1
2

1 0
0 1

 =
1

2
1
2

1
2

1
2

M
[
marg∆s(D2,s) m

]
,

which implies that m′ is a garbling of m. Furthermore, margC m′ = margC m, so that
d ≥B d′. In words, d′ is an “iid” temporal lottery while d is perfectly correlated. △

I follow Bommier et al. (2017) to describe an agent who exhibits a preference for
early resolution of uncertainty (see their Definition 2 and also Strzalecki 2013).

Definition 3 (PERU). Preferences ⪰ exhibit a preference for early resolution of
uncertainty (PERU) if for every n > 0, c0, c1 ∈ C, (c2i, mi)n

i=1 ∈ D2,s, and probability
vector (πi)1≤i≤n

dearly
KP :=

(
c0,

n⊕
i=1

πi (c1, c2i, mi)
)

⪰0

(
c0, c1,

n⊕
i=1

πi (c2i, mi)
)

:= dlate
KP
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As I show in the Appendix (see Lemma 2), dearly
KP ≥B dlate

KP , which explains why
preferring dearly

KP to dlate
KP can equivalently be understood as a preference for non-

instrumental information. The next result characterizes PERU.

Proposition 1. Assume ⪰ admit a KP representation (ϕ, u, β) with ϕ ∈ C2. Then
preferences ⪰ exhibit PERU if and only if

−β
ϕ′′(βx + y)
ϕ′(βx + y) ≤ −ϕ′′(x)

ϕ′(x) , (3)

for every x, y ∈ int u(C).4

Proof. See the Appendix.

Observe that the quantity defined by

ERϕ(x, y) = −ϕ′′(x)
ϕ′(x) + β

ϕ′′(βx + y)
ϕ′(βx + y) for every x, y ∈ int u(C), (4)

can be considered as a local measure of strength of preference for non-instrumental
information. In Appendix A.2, I introduce the notion of early resolution premium,
and show that it is a function of the weighted average of different values of ERϕ. To
illustrate, when β = 1 and ϕ(x) = − exp

(
−x

θ

)
we obtain that

ERϕ(x, y) = 1
θ

− 1
θ

= 0,

which implies indifference to non-instrumental information. The same applies if ϕ is
the identity.

Here I focus on risk attitudes that exhibit a preference for information regardless
of the level of impatience or intertemporal substitution.

Definition 4 (UPI). Say that ϕ satisfies a uniform preference for information (UPI)
if every preference relation ⪰ with a KP representation (ϕ, u, β) exhibit PERU.

The next simple result provides a connection between classical risk attitudes and
preference for information.

Proposition 2. If ϕ ∈ C2 satisfies UPI then it also satisfies DARA.

Proof. Immediate from (3).
4Condition (3) is due to Strzalecki (2013); see p. 1051.
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3 Main results: correlation aversion

I introduce a general notion of an increase in positive correlation between consumption
at two distinct periods. I then characterize recursive preferences that are averse to
correlation. For ease of exposition, I consider the case in which there are two risky
periods, i.e., T = 2. The Supplemental Appendix (see Section S.1) extends the results
to an infinite horizon T = ∞.

I introduce a class of temporal lotteries that can be defined by (i) the distribution
of consumption at time t = 1 and (ii) the conditional distribution of consumption at
time t = 2 given consumption in the previous period. The advantage is that lotteries
within this class can be ordered based on their correlation.

Let

M∗
s := {m ∈ ∆s(C × ∆s(C)) : (c, µ), (c, µ′) ∈ supp m =⇒ µ = µ′} .

Every such m ∈ M∗
s can be (uniquely) associated with m1 ∈ ∆s(C) and m2(·|·) ∈

∆s(C)suppm1 , defined by m1 = margC m, and

m2(·|c) = µ(·),

where µ is the unique element of ∆s(C) such that (c, µ) ∈ supp m. Conversely, given
m1 ∈ ∆s(C) and m2(·|·) ∈ ∆s(C)suppm1 , we can uniquely define m ∈ M∗

s by

m(c, m2(·|c)) := m1(c) for every c ∈ suppm1.

In words, m1 describes the distribution of time 1 consumption while m2(·|c) is the
conditional distribution of consumption at the final time period given a realization of
t = 1 consumption. The set D∗

0,s := {(c, m) ∈ D0,s : m ∈ M∗
s } is the set of temporal

lotteries that can be described in terms of a pair (m1, m2).
The structure of these lotteries can be used to introduce the following notion of

increasing correlation.

Definition 5 (IECIT). Consider d = (c0, m), d′ = (c0, m′) ∈ D∗
0,s. Say that d differs

from d′ by an intertemporal elementary correlation increasing transforma-
tion (IECIT) if and only if m1 = m′

1 and there exist ε ≥ 0 and a pair (c, c′) such
that c ̸= c′, m1(c), m1(c′) ̸= 0 and

m2(c|c) = m′
2(c|c) + ε

m′
1(c) ,

14



m2(c′|c) = m′
2(c′|c) − ε

m′
1(c) ,

m2(c′|c′) = m′
2(c′|c′) + ε

m′
1(c′) ,

m2(c|c′) = m′
2(c|c′) − ε

m′
1(c′) ,

and m2 = m′
2 otherwise.

In simpler terms, these transformations increase the probability that if consump-
tion at t = 1 is either c or c′ it will remain the same at t = 2 and concurrently decrease
the probability that consumption will shift to a different level. The following two ex-
amples serve as an illustration of this concept.

Example 4 (Example 3 continued). In this case we have m1 = m′
1, m2(1|1) = 1 =

m′
2(1|1) + 1

1/2
1
4 = 1

2 + 1
2 , m2(1|1) = 0 = m′

2(1|1) − 1
1/2

1
4 = 1

2 − 1
2 , m2(1|0) = 0 =

m′
2(1|0) − 1

1/2
1
4 = 1

2 − 1
2 and m2(0|0) = 1 = m′

2(0|0) + 1
1/2

1
4 = 1

2 + 1
2 . It follows that d

differs from d′ by an IECIT with ε = 1
4 . Therefore, the perfectly correlated temporal

lottery d can be obtained from the “iid” lottery d′ by means of an IECIT. In this
case, an IECIT also increases the informativeness of a temporal lottery. △

The concept of an IECIT is an application of Epstein and Tanny’s (1980) idea of
generalized increasing correlation, applied in a dynamic setting. With the notion of
an IECIT, it is possible to establish an ordering ≥C that can be used to rank temporal
lotteries based on their persistence.

Definition 6 (Correlation order). Given d, d′ ∈ D∗
0,s say that d is more correlated

than d′, denoted d ≥C d′, if d differs from d′ by a finite amount of IECITs.

Observe that ≥C is transitive and thus a partial order. The following result
establishes a formal connection between IECITs and non-instrumental information
by showing that increasing the correlation of “iid” temporal lotteries makes them
more informative. To this end, define the iid temporal lottery for each ℓ ∈ ∆s(C) by
diid(ℓ) = (c, m) where m2(·|c) = ℓ(·) for every c ∈ C. In words, the distribution of
consumption at each period is described by ℓ.

Proposition 3. Consider ℓ ∈ ∆s(C) and d, d′ ∈ D∗
0,s. Then it holds that

d ≥C≥ d′ ≥C diid(ℓ) =⇒ d ≥B d′ ≥B diid(ℓ).
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Proof. See the Appendix.

This proposition establishes formally the main trade-off described in the intro-
duction: increasing persistence in consumption risks to an iid lottery provides more
information about future consumption. We can define correlation aversion as aversion
towards increasing correlation to an iid temporal lottery.

Definition 7 (Correlation aversion). Preferences ⪰ exhibit correlation aversion if for
every d, d′ ∈ D∗

0,s and ℓ ∈ ∆s(C)

d ≥C d′ ≥C diid(ℓ) =⇒ diid(ℓ) ⪰0 d′ ⪰0 d.

The next result characterizes correlation averse preferences in terms of risk atti-
tudes, under the assumption of UPI, i.e. when there is a trade-off between intertem-
poral hedging and non-instrumental information.

Theorem 1. Consider ϕ ∈ C3 that satisfies UPI. Then every preference relation ⪰
with KP representation (ϕ, u, β) exhibit correlation aversion if and only if ϕ is concave
and satisfies IRRA.

Proof. See the Appendix.

Thus, when ϕ satisfies UPI, every KP preference with representation (ϕ, u, β) is
correlation averse exactly when it is risk averse (i.e., ϕ is concave) and exhibits increas-
ing relative risk aversion (IRRA). Observe that IRRA is one of the most important
classes of utility functions (e.g., see Arrow (1971), p. 96), and notably includes the
Epstein-Zin and Hansen-Sargent preferences. Moreover, empirical findings support
DARA and IRRA (Wakker (2010), p. 83). This result further implies that indifference
to correlation occurs only under a linear adjustment factor, i.e., ϕ(x) = x.5

A bound on preference for information. A central implication of Theorem 1
is that IRRA constrains preference for information. To illustrate, assume that ϕ

exhibits HARA: suppose that for x > 1

ϕ(x) = 1 − γ

γ

(
x

1 − γ
+ b

)γ

,

5Note that the “boundary” case of indifference to correlation occurs when the relative risk aversion
function Rϕ is constant and equal to zero. Indeed, as a consequence of the proof of Theorem 1,
whenever Rϕ(x) > 0 for some x, one can construct an iid lottery that is strictly better than a lottery
that differs from it by an IECIT.
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with 0 ̸= γ < 1 and b ∈
[

1
γ−1 , ∞

)
. Then, given x, y > 1, it is easy to check that when

β = 1 the local measure of strength of preference for non-instrumental information

−ϕ′′(x)
ϕ′(x) + ϕ′′(x + y)

ϕ′(x + y) ,

is decreasing in the parameter b. In words, the smaller the parameter b, the greater
the preference for information. In this case, we have

R′
ϕ(x) = (γ − 1)2b

(b(1 − γ) + x)2 ,

so that IRRA implies b ≥ 0, thus excluding the case b ∈
[

1
γ−1 , 0

)
, where the DM

values information more. Therefore, IRRA limits preference for information.
More generally, note that IRRA means that Rϕ is non-decreasing. Therefore,

when Rϕ is differentiable we have:

R′
ϕ(x) ≥ 0 =⇒ A′

ϕ(x) ≥ −Aϕ(x)
x

,

for every x ̸= 0. Under DARA it holds A′
ϕ ≤ 0, so that we obtain

A′
ϕ(x) ∈

[
−Aϕ(x)

x
, 0
]

.

This means that IRRA limits the reduction of absolute risk aversion for a given
increase in utility. Therefore, when β is close to unity, IRRA effectively imposes an
upper bound on −ϕ′′(x)

ϕ′(x) + β ϕ′′(βx+y)
ϕ′(βx+y) since

−ϕ′′(x)
ϕ′(x) + β

ϕ′′(βx + y)
ϕ′(βx + y) ≈ −A′

ϕ(x)y ≤ Aϕ(x)y
x

. (5)

The persistence premium. To measure the level of correlation aversion, I introduce
the notion of the persistence premium. The persistence premium quantifies how much
a DM is willing to pay to eliminate all persistence from consumption. As a byproduct
of Theorem 1, I derive an approximation of the persistence premium in the spirit of
Pratt (1964) and Bommier (2007), which connects the premium with preference for
information.

Formally, given c0 > 0, x > y > 0, let

dcorr(ε) =
(
c0,

1
2

(
x,
((

1
2 + ε

2

)
x ⊕

(
1
2 − ε

2

)
y
))

⊕ 1
2

(
y,
((

1
2 − ε

2

)
x ⊕

(
1
2 + ε

2

)
y
)))

,
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and

diid(π) =
(
c0, 1

2

(
x(1 − π),

(
1
2x(1 − π) ⊕ 1

2y(1 − π)
))

⊕ 1
2

(
y(1 − π),

(
1
2x(1 − π) ⊕ 1

2y(1 − π)
)))

.

The correlated lottery dcorr(ε) is a generalization to arbitrary consumption levels
of the perfectly correlated lottery in Example 3. In this case, the level of correlation
depends on the parameter ε ∈ [0, 1], where at ε = 0 one has no correlation and
perfect correlation at ε = 1. In contrast, the lottery diid(π) is iid but the payoffs are
discounted by a factor of (1 − π) ∈ [0, 1].

Consider preferences ⪰ with KP representation (ϕ, u, β), where ϕ ∈ C3 is concave,
and satisfies both IRRA and UPI. For simplicity, assume that u(x) = x. By Theorem
1, V0

(
diid(0)

)
≥ V0 (dcorr (ε)) for every ε ∈ [0, 1], and as we increase π, V0

(
diid (π)

)
strictly decreases. In particular, V0

(
diid(1)

)
< V0 (dcorr (ε)) for every ε ∈ [0, 1].

Therefore, we can denote with π(ε) ∈ [0, 1] the unique solution to the equation

V0 (dcorr (ε)) = V0
(
diid (π (ε))

)
. (6)

The persistence premium π(ε) therefore quantifies how much of consumption one is
willing to relinquish to have all persistence removed from consumption. The next
result provides an approximation of π(ε) near ε = 1.

Corollary 1. There exist constants k1, k2, k3 > 0 such that for every ε ∈ [0, 1]

π(ε) = k1
(
V0(diid(0)) − V0(dcorr(1))

)
+ k2(ε − 1)

∫ x

y

ϕ′(z(1 + β))
ϕ′(z)

{
Rϕ(z(1 + β)) − Rϕ(z)

}
z

dz (7)

− k3(ε − 1)2
{

ϕ′(x(1 + β))
ϕ′(x) ERϕ(x, x) + ϕ′(y(1 + β))

ϕ′(y) ERϕ(y, y)
}

+ o
(
(ε − 1)3).

Proof. See the Appendix.

The first term of this approximation shows that the persistence premium positively
depends on the difference between the value of the iid and the perfectly correlated
lottery, independent of the level of correlation ε. In parametric formulations, such as
EZ or HS preferences, the term V0(diid(0))−V0(dcorr(1)) will increase as the parameter
of risk aversion increases.

The second and third terms refer, respectively, to the speed and acceleration of
the persistence premium as the level of correlation increases. Since ϕ satisfies IRRA,
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Rϕ(z(1 + β)) − Rϕ(z) is non-negative, and since additionally ϕ′ > 0 it follows that
the premium is increasing in the level of persistence. In particular, the greater the
derivative of Rϕ, the faster the premium grows with persistence. However, the third
term depends on an average of the measure of preference for information, ERϕ(x, x)
and ERϕ(y, y). The greater the degree of preference for information, the more the
premium grows at a decreasing pace. Hence, this approximation reflects the trade-off
between hedging and information.

To illustrate this approximation in a practical case, quick calculations reveal that
when ϕ(x) = 1

α
(ρx)

α
ρ we obtain that ERϕ(x, y) = y(1− α

ρ )
x(βx+y) and for some ã, b̃, c̃ > 0

π(ε) = ã + b̃ ε
(

1 − α

ρ

)(1
x

+ 1
y

)
− c̃ (ε2 − 1) ERϕ(x, y) + o

(
(ε − 1)3

)
.

This formula provides the approximation introduced earlier. It illustrates how the
trade-off depends on the preference parameters: higher risk aversion causes the pre-
mium to rise more rapidly as ε increases, while higher EIS slows it when α < 0 but
speeds it up when α > 0. At the same time, a higher ERϕ moderates the increase.
This moderating effect itself depends on both risk aversion and EIS—since ERϕ de-
pends on both α and ρ—reflecting the fact that correlation aversion and PERU are
not fully distinguishable in the EZ model. I examine the implications of this result
for asset pricing in Section 4.1.

Correlation aversion and model misspecification. A further examination of
IRRA reveals a tight connection between correlation aversion and fear of model mis-
specification. Consider the following condition which strengthens IRRA by requiring
that the index of relative risk aversion increases sufficiently rapidly.

Definition 8 (SCA). Say that ϕ ∈ C4 satisfies strong correlation aversion (SCA) if
it is concave, it satisfies IRRA, and R′′

ϕ(x) ≥ 0 for every x ∈ (0, ∞).

Thus, SCA requires not only that the index of relative risk aversion Rϕ is increas-
ing, but also that it increases at a sufficiently fast pace. Observe that both EZ and
HS preferences satisfy this condition since in both cases R′′

ϕ = 0. Proposition S.2 in
the Supplemental Appendix provides an axiomatic foundation for SCA.

To talk about model misspecification, one needs a notion of distance between
probabilistic models. A function I : X × X → [0, ∞] is called a statistical distance
(Liese and Vajda, 1987) if I(·∥x) is convex and lower semicontinuous, and I(x∥x) = 0
for all x ∈ X.
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Theorem 2. Assume that ⪰ admits a KP representation (ϕ, u, β) with ϕ ∈ C4 that
satisfies UPI. If ϕ satisfies SCA, then ⪰ admits the recursive representation (Vt)2

t=0

which satisfies V2(c) = u(c) and for every (c, m) ∈ Dt,s

Vt(c, m) = u(c) + β min
ℓ∈∆b(Dt+1)

{
EℓVt+1 + I t

(ϕ,u,β)(ℓ||m)
}

for t = 0, 1,

where I t
(ϕ,u,β)(·, ·) : ∆b(Dt+1) × ∆b(Dt+1) → [0, ∞] is a statistical distance.

Proof. See the Appendix.

This result formalizes the connection between robustness to model misspecifica-
tion and correlation aversion. By introducing a mild strengthening of risk attitudes
related to correlation aversion, recursive preferences naturally reflect a fear of model
misspecification. The extent to which SCA is necessary for this representation is
discussed in the proof.

The intuition behind this representation is that the decision-maker is concerned
about the potential misspecification of the distribution of future consumption. As
a result, alternative distributions are evaluated based on their distance from m, as
measured by the statistical distance I t

ϕ,u,β (the general formulation of these statistical
distances is discussed in the Appendix). Therefore, I t

ϕ,u,β(ℓ∥m) quantifies the “cost” of
considering alternative distribution ℓ at time t. The dependence on t arises from the
finite horizon, while the Supplemental Appendix establishes uniqueness when T = ∞.

As with multiplier preferences (Strzalecki, 2011), these statistical distances repre-
sent the fear of model misspecification—lower values imply lower costs for alternative
distributions. However, unlike the framework in Strzalecki (2011), here the cost eval-
uates discrepancies between temporal lotteries rather than subjective beliefs.

For HS preferences, where ϕ(x) = −e− x
θ , the cost function corresponds to Relative

Entropy (Strzalecki, 2011):

I t
ϕ,u,β(ℓ∥m) = θEm

[
dℓ

dm
log dℓ

dm

]
, if ℓ ≪ m, else ∞.

Unlike HS preferences, the cost function for EZ preferences depends additionally
on continuation utility. Moreover, Meyer-Gohde (2019) shows the cost function in
this case can be expressed via the Tsallis entropy (see also equation 19 for an equiv-
alent characterization in terms of Rényi divergence). Theorem 2 extends this model
misspecification interpretation to all recursive preferences satisfying SCA.
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4 Applications

4.1 Asset pricing

A key finding in macro-finance is that stocks are procyclical—they generate high
returns during economic expansions but tend to crash in recessions (see, for example,
Cochrane 2008). As a result, stocks are poor hedging instruments compared to bonds,
which offer a relatively stable yield regardless of the business cycle. However, this
limited hedging capability alone does not justify the substantial excess returns that
investors require for holding equities. This inconsistency is known as the equity
premium puzzle.

When economic growth is persistent, correlation aversion makes equity even worse
for a hedging instrument: stock prices rise with favorable long-term economic prospects
and fall sharply when those prospects deteriorate. Consequently, Theorem 1 and
Corollary 1 imply that investors who are correlation averse will demand an even
higher premium for bearing equity risk relative to bonds. In general, the relative
attractiveness of bonds versus stocks depends on the strength of the preference for
early resolution compared to risk aversion. Investors who are risk averse but place
little value on early information will tend to favor bonds, whereas those who value
early resolution strongly relative to their risk aversion will prefer stocks, since stocks
convey news about long-run consumption growth.

This observation carries important macro-financial implications. In particular, the
long-run risk model of Bansal and Yaron (2004) introduces a persistent component in
consumption growth. If the representative investor has Epstein and Zin’s preferences,
this model is able to match the observed equity premium. In particular, this model
relies on a consumption process (case I) that satisfies for t = 0, . . .

log
(

ct+1

ct

)
= m + xt+1 + σϵc,t+1,

xt+1 = axt + φσϵx,t+1,

ϵc,t+1, ϵx,t+1 ∼ iid N(0, 1),

(8)

where dt := log
(

ct+1
ct

)
denotes consumption growth, m, σ, ϕ > 0, and a ∈ [0, 1) is the

persistence parameter. The representative investor has EZ preferences with discount
factor β ∈ (0, 1) so that the utilities Ut satisfy the recursion

Ut = u−1
(

(1 − β)u(ct) + βu
([

Et

(
Uα

t+1

)]1/α
))

,
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where u(x) = xρ for ρ ∈ [0, 1), under the convention that for ρ = 0, u(x) = log(x).
This formulation of EZ preferences is ordinally equivalent to the one in (1) (e.g., see
Werner 2024).

Such a model faces the trade-off discussed previously. An investor with recursive
preferences values both the early resolution of uncertainty and intertemporal hedging.
Theorem 1 and Corollary 1 suggest that an investor with EZ preferences is worse off as
the persistence a increases, but due to preference for information, at a decreasing rate.
It follows that the persistent component of consumption inflates the equity premium
because of correlation aversion, despite preference for non-instrumental information.
Preferences for early resolution of uncertainty still play a role in other contexts such as
the macroeconomic announcement premium; see for example Ai and Bansal (2018).6

The persistence premium under long-run risk. Epstein et al. (2014) suggest
that the long-run risk model entails implausibly high levels of preferences for early
resolution of uncertainty. They introduce the concept of a “timing premium” to reflect
preferences for early resolution of uncertainty, which, when ρ = 0, is given by:

1 − exp
{

α

2
β2σ2

1 − β2

(
1 + φβ2

(1 − βa)2

)}
.

Under the standard parameters of the model from the literature, they note that the
resulting timing premium seems excessively high compared to introspective assess-
ments.

In light of my analysis of correlation aversion, I ask a different question: “What
fraction of your wealth would you give up to remove all persistence in consumption?”
Formally, here the persistence premium is defined as

π := 1 − U0(dcorr)
U0(diid) ,

where diid and dcorr are the stochastic processes of consumption in (8) with a = 0
(no persistence) and a = 0.9790, respectively. Given that EZ utility is positively
homogeneous, the persistence premium, as in the previous section, quantifies the
proportion of consumption an investor would be willing to forgo to eliminate all
persistence from consumption.

6Note that in the long-run risk model, there are other features of preferences at play, unrelated
to those discussed here. For instance, in this model it is crucial that the EIS 1, as this ensures that
the substitution effect outweighs the income effect.
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σ φ a β 1 − α ρ x0 π

0.0078 0.044 0 0.998 7.5 0 0 0
0.0078 0.044 0.9790 0.998 7.5 0 0 30%
0.0078 0.044 0.9790 0.998 10 0 0 40%

Table 1: Parameters of the LRR model (see Epstein et al. (2014)

When ρ = 0 the persistence premium is given by (see Appendix A.5)

π = 1 − exp
{

β

1 − βa
x0 − βx0 + α

2
βσ2

1 − β

(
φ2β2

(1 − βa)2 − φ2β2
)}

,

Thus, π increases with the degree of persistence a, and grows more rapidly with higher
risk aversion 1 − α, as well as with the volatility parameters σ and φ. Moreover, the
timing premium also depends on these parameters in a similar fashion.

This pattern mirrors that of the approximate persistence premium discussed in
the preceding section, based on the approximation in equation (7). In this case, when
ϕ(x) = −eαx, for some constants ã, b̃ > 0, and for values of β close to unity, we have
that for x > y:

π(ε) ≈ ã − b̃ε
(
eαx − eαy

)
.

Hence, this premium also increases with the persistence parameter ε ∈ [0, 1]. More-
over, for sufficiently small α, the rate of increase is amplified by higher risk aversion
1−α and by greater consumption volatility, which is driven by the difference between
x and y.

Table 1 summarizes the parameters of the model. In particular, with a risk aver-
sion level of 1−α = 7.5, I obtain π ≈ 30%, while π ≈ 40% when 1−α = 10 (see again
Appendix A.5). In other words, an investor with such preferences would be willing to
give up either 30% or 40% of their wealth to remove persistence of consumption. Since
in the long-run risk model the persistent component is small, it seems unreasonable
at the level of introspection to have such a high time premium. To better under-
stand whether this intuition is correct, I will now examine what reasonable levels of
the persistence premium are supported by the experimental evidence on correlation
aversion.

Measuring risk aversion via correlation aversion. Rohde and Yu (2024) propose
a model-free method to measure correlation aversion. Their approach quantifies the
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degree of positive correlation aversion (Rohde and Yu, 2024, p. 3496) by computing
the difference in present certainty equivalents between an iid temporal lottery diid and
a perfectly positively correlated temporal lottery dcorr relative to the present certainty
equivalent of the iid lottery, that is:

∆%
POS := u−1(V0(diid)) − u−1(V0(dcorr))

u−1(V0(diid)) = 1 − u−1(V0(dcorr))
u−1(V0(diid)) . (9)

Assuming that β = 0.998 and ρ = 1
3—standard parameter specifications in the macro-

finance literature—I find that one can match the observed level of ∆%
POS with a level

of risk aversion such that 1 − α ≈ 1.2. When ρ = 0, the observed level of ∆%
POS can

instead be matched with a level of risk aversion satisfying 1−α ≈ 1 (see Section A.6).
These results are consistent with existing estimates, which find 1 − α to be between
1 and 2 (see, for example, the discussion on p. 154 in Mehra and Prescott 1985).

So why is the persistence premium π under long-run risk so high? Rohde and Yu
(2024) find that correlation aversion does not depend on preference for information.
However, as shown previously, Epstein-Zin preferences cannot distinguish between
risk aversion and preference for information. Indeed, when relative risk aversion 1−α

increases, the measure of preference for information increases as well since

ERϕ(x, y) =
y(1 − α

ρ
)

x(βx + y) . (10)

Therefore, based on the approximation in equation (7), one can see that in the EZ
case, a higher relative risk aversion parameter, 1 − α, leads to greater values of
ERϕ(x, x) and ERϕ(y, y). This effect is amplified given that α < 0 and that the EIS
is large in the long-run risk model. This, in turn, causes the persistence premium to
grow at a slower rate as the level of persistence increases. This result explains why
one may need very high levels of risk aversion and persistence to achieve the degree
of correlation aversion necessary to match the equity premium.

An extension of Epstein-Zin preferences. I introduce a new model where the pa-
rameter of risk aversion does not necessarily increase preference for information. With
this model, one can match the elicited level of correlation aversion in the experiment
of Rohde and Yu (2024) with much lower levels of preference for information. This
point is connected to the one raised by Meyer-Gohde (2019) who showed that a gen-
eralization of EZ preferences can produce Sharpe ratios comparable to the empirical
values using more realistic parameters.
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I consider the following HARA risk adjustment factor ϕγ,b (Merton, 1971, p. 389)
given by

ϕγ,b(x) = 1 − γ

γ

(
x

1 − γ
+ b

)γ

for every x ∈ C, (11)

where 0 ̸= γ < 1 and b ≥ 0. Preferences ⪰ admit a HARA recursive representation if
they admit a KP recursive representation (ϕγ,b, u, β).

The risk adjustment factor of EZ preferences corresponds to the case b = 0 and
γ = α

ρ
. Notice that this risk adjustment factor permits a partial separation between

risk aversion and preference for information, meaning that high levels of risk aversion
can coexist with either a high or low degree of preferences for early resolution of
uncertainty. See Appendix A.7 for a formal discussion of these facts. This reasoning
motivates the following recursive representation.

In Appendix A.7, I show that ϕγ,b satisfies UPI. Consequently, by Theorem 1,
correlation aversion corresponds to IRRA, which is equivalent to b ≥ 0. Moreover,
consistent with the intuition discussed earlier, I show that HARA recursive preferences
can replicate the experimentally observed correlation aversion reported by Rohde and
Yu (2024), using significantly lower—and thus more realistic—levels of risk aversion
compared to standard EZ parametrizations commonly employed in asset pricing. In
short, with a more reasonable utility specification, bonds can be attractive without
assuming implausibly high risk aversion.

4.2 Application: income taxation and social mobility

In a setting of intergenerational mobility, where multiple dynasties care about both
today’s consumption and future generations, the trade-off between hedging and infor-
mation becomes a trade-off between social mobility and the predictability of income
status—that is, the extent to which future positions are dictated by one’s current
place in the distribution (Shorrocks, 1978).

In this setting, correlation aversion has a significant impact on redistribution poli-
cies. Indeed, I show that redistribution policies—which resemble an “inheritance”
tax based on historical family income—weaken persistent links between parental and
child outcomes, increasing social mobility compared to standard preferences. The
same result can also be achieved through alternative policies that reduce long-term
consumption inequality, such as the redistribution of education expenditures.
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More specifically, I consider a modified version of Benabou’s (2002) dynamic model
of optimal income taxation with the additional assumption that the innate ability
shock can be persistent. In this model, progressive income taxation can serve as a
welfare-enhancing tool due to imperfections in credit and insurance markets. How-
ever, redistribution introduces distortions in agents’ effort or savings decisions, reflect-
ing the classic trade-off between equity and efficiency. One might expect that, as the
persistence of innate ability increases, the optimal progressive tax rate (i.e., the one
maximizing steady-state aggregate welfare) would become more progressive in order
to mitigate the heightened risks arising from imperfections in insurance markets.

Contrary to this intuition, the tax rate that maximizes steady state welfare re-
mains around 33–35%, regardless of the level of persistence of innate ability. However,
with recursive utility, correlation aversion amplifies the impact of greater persistence,
leading to a significant increase in the optimal progressive tax rate, rising from 45%
to 51%. As a consequence, correlation aversion leads to higher social mobility (see
equation 12 and the related discussion).

The model. Consider Park’s (2009) modified version of Benabou’s model. There
is a continuum of infinitely-lived agents or dynasties, indexed by i ∈ [0, 1]. In each
period t = 0, 1, 2, . . . , agent i chooses consumption ci

t and labor supply li
t to maximize

intertemporal utility U i
t , defined recursively by:

U i
t = max

ci
t, lit

exp
{

(1 − β)
(
ln ci

t − (li
t)η
)

+ β ln
[
Et

(
(U i

t+1)γ
)]1/γ

}
,

subject to the constraints:

yi
t = (hi

t)λ(li
t)µ, (i)

ŷi
t = ci

t + ei
t, (ii)

hi
t+1 = k ξt+1(hi

t)α(ei
t)ρ. (iii)

Therefore, each dynasty has EZ preferences that satisfy correlation aversion. In this
model, 1

η−1 is the elasticity of labor supply and 1−γ is relative risk aversion. The pa-
rameter k scales human-capital formation; α is the elasticity with respect to parental
human capital; and λ and µ are the output shares of human capital and labor. In-
come (yi

t) and disposable income (ŷi
t) depend on labor supply (li

t) and human capital
(hi

t). Human capital (hi
t+1) is determined by the innate ability shock (ξt+1), parental
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human capital (hi
t, where ln hi

0 ∼ N(m0, ∆0)), and investment in education (ei
t). The

expectation operator Et is conditional on the realized human capital hi
t.

The constraints require that (i) the income of each generation is produced by
combining inherited human capital with labor supply, (ii) that entire income must be
allocated between consumption and educational investment in the next generation,
and (iii) the child’s human capital next period arises from a technology that mixes
parental human capital, the education investment just made, and an uninsurable
innate ability shock.

The innate ability shock ξt can be interpreted as reflecting among other things
cognitive ability, and evolves according to the relationship

log(ξt) = ϕ log(ξt−1) + εt where εt ∼ N
(
µε, σ2

ε

)
,

where ϕ denotes the level of persistence of innate ability. Durlauf (1996) provides a
theoretical foundation for persistence in innate ability.

The break-even level income ỹt is defined implicitly by the balanced-budget con-
straint: ∫ 1

0

(
yi

t

)1−τ
(ỹt)τ di =

∫ 1

0

(
hi

t

)λ (
li
t

)µ
di,

and the disposable income ŷi
t is a loglinear function of market income,

ŷi
t =

(
yi

t

)1−τ
(ỹt)τ ,

where the elasticity τ measures the rate of progressivity of fiscal policy.
The taxation mechanism operates as follows: after determining the market income

for all agents, the government calculates the break-even income level, ỹt. Agents then
report their market income to the tax agency. If an agent’s income, yi

t, exceeds ỹt,
they pay a positive tax; otherwise, they receive a subsidy. The elasticity, τ , reflects
the progressivity of fiscal policy, with both average and marginal tax rates increasing
when τ > 0.

The planner’s objective is to optimize the steady-state aggregate welfare given
by limt→∞ Wt, where Wt =

∫ 1
0 ln U i

t di. Park (2009) shows that under standard dis-
counted expected utility (i.e., 1 − γ = 1, which corresponds to logarithmic utility)
the optimal progressive tax rate is 33% with no persistence of innate ability (ϕ = 0)
and equal to 35% when persistence increases to ϕ = 0.6. This result suggests that
greater persistence has minimal impact on redistribution through progressive taxa-
tion. However, I show that with correlation averse preferences satisfying 1 − γ = 10
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(see Appendix A.8) one has significantly higher variability: the optimal progressive
tax rate is approximately τ ∗ = 45.25% for ϕ = 0 and τ ∗ = 51.72% for ϕ = 0.6.

Notably, correlation aversion increases social mobility. To see this formally, ob-
serve that log(ht)i follows an AR(2) process with autoregressive coefficients (α +
λβ(1 − τ)) + ϕ and −(α + λβ(1 − τ))ϕ. As an inverse measure of social mobility, we
can therefore take the sum of these two coefficients:

(α + λβ(1 − τ)) (1 − ϕ) + ϕ. (12)

Because correlation averse preferences lower this inverse measure relative to the stan-
dard case, they imply higher social mobility (see Appendix A.8 for details.)

This result relates to Gottschalk and Spolaore’s (2002) argument that employing
recursive utility generates a preference for social mobility. Nevertheless, in this model
society aggregates utility additively, so the effect depends not on the welfare criterion
but rather on individual preferences, which exhibit correlation aversion and favor
mobility over the predictability of income status.

5 Concluding remarks and discussion

This paper has explored the relationship between non-instrumental information and
intertemporal hedging within the framework of recursive preferences. I have shown
that under reasonable constraints on risk attitudes, a decision maker will value in-
tertemporal hedging more than early resolution of uncertainty. I highlighted the im-
portance of this trade-off in applications such as asset pricing and intergenerational
mobility.

A limitation of existing models is that both correlation aversion and preference
for information are entirely determined by risk aversion. To address this issue, the
paper proposed a generalization of Epstein-Zin preferences to partially separate risk
aversion and preference for non-instrumental information.

Further research is needed to understand the implications of more general recursive
utility models. Below, I connect my findings to related literature in economics as
potential avenues for further research.

Stochastic impatience. DeJarnette et al. (2020) and Dillenberger et al. (2024)
study stochastic impatience, an axiom that extends impatience to risky environments.
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Figure 4: Relationship between correlation averse (CA) preferences and recursive
preferences that satisfy intertemporal-hedging (IH), Epstein-Zin (EZ) preferences,
and stochastic impatience (SI)

Like correlation aversion, stochastic impatience is a normatively desirable behavioral
postulate. They find that EZ and HS models exhibit stochastic impatience provided
that the level of risk aversion is not excessively high relative to the inverse of the EIS
parameter. The relationship between correlation aversion and stochastic impatience
is represented in Figure 4. In particular, correlation aversion can be compatible with
stochastic impatience. Similar to my findings, their results also advocate for a more
general specification of preferences in order to reduce the level of risk aversion used
in applications.

Climate policy. Cai and Lontzek (2019) develop a dynamic stochastic general
equilibrium model to estimate the effect of economic and climate risks on the social
cost of carbon (SCC). They consider productivity shocks that exhibit persistence,
leading to consumption growth rates that display long-run risk as in (8). Combined
with Epstein-Zin preferences, the inclusion of persistent productivity shocks results in
substantially higher social cost of carbon compared to scenarios without productivity
shocks (see pp. 2705-2706 in Cai and Lontzek 2019). The persistence premium
developed in this model can be used to quantify the cost of long-run climate risks.

Utility smoothing and fiscal hedging. Karantounias (2018, 2022) shows that
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Epstein-Zin recursive preferences significantly alter standard Ramsey tax-smoothing
policies. The planner adopts fiscal hedging, taxing less during downturns and more
during upturns to mitigate income shocks, driven by aversion to volatility in future
utilities (Karantounias (2018), p. 2284).

Such a feature of preferences emerges in spite of the fact that recursive prefer-
ences value early resolution of uncertainty. Instead, this feature emerges from cor-
relation aversion. As shown by Theorems 1 and 2, aversion to volatility in future
utilities—mathematically reflected by concavity of the certainty equivalent—is char-
acterized by bounds on preferences for early resolution of uncertainty. The findings
of my paper demonstrate that the same implications for optimal fiscal policy may not
hold when using recursive preferences that do not satisfy correlation aversion, as is
the case with preferences that exhibit DRRA.

A Appendix

A.1 Acronyms, Notation, and Technical Definitions

Polish Spaces. A Polish space is a topological space that is:

1. Completely metrizable (i.e., there exists a metric that induces the topology and
makes the space complete), and

2. Separably metrizable (i.e., there exists a countable, dense subset).

Simple Probability Measures (∆s(X)): Let X be a Polish space. The space of
simple probability measures on X, denoted ∆s(X), is the set of probability measures
on X with finite support. That is:

∆s(X) =
{
µ ∈ ∆(X) : there exists a finite subset {x1, . . . , xn} ⊆ X

such that µ({x1, . . . , xn}) = 1
}
.

Borel Probability Measures with Bounded Support (∆b(X)): Let X be a
Polish space. The space of Borel probability measures with bounded support on X,
denoted ∆b(X), is the set of all Borel probability measures µ on X such that the
support of µ, supp(µ), is compact:

∆b(X) = {µ ∈ ∆(X) : supp(µ) is compact} .
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Acronym/Symbol Description
Vt Recursive utility representation at time t

u Utility function capturing intertemporal substitution
ϕ Risk adjustment factor
β Discount factor
EIS Elasticity of Intertemporal Substitution
IRRA Increasing Relative Risk Aversion
DARA Decreasing Absolute Risk Aversion
CRRA Constant Relative Risk Aversion
HARA Hyperbolic Absolute Risk Aversion
PERU Preference for information/early resolution of uncertainty
UPI Uniform preference for information
SCA Strong correlation aversion
KP Kreps-Porteus preferences
EZ Epstein-Zin preferences
HS Hansen and Sargent’s multiplier preferences
π(ε) Persistence premium given a level of persistence ε ∈ [0, 1]
∆%

POS Measure of correlation aversion from Rohde and Yu (2024)
C Consumption set: [0, ∞) or (0, ∞)
∆b(X), ∆s(X) Borel probability measures with bounded support on X

Dt,s Simple (finite support) temporal lotteries at time t

D∗
0,s Set of lotteries with defined correlation structures

T Finite time horizon, with T = 2 in Section 3

Table 2: List of Acronyms and Symbols

Absolute Continuity (ℓ ≪ m). Let ℓ, m ∈ ∆b(X). The measure ℓ is absolutely
continuous with respect to m (denoted ℓ ≪ m) if for every Borel set A ⊆ X,

m(A) = 0 =⇒ ℓ(A) = 0.

Radon-Nikodym Derivative ( dℓ
dm

). If ℓ ≪ m, the Radon-Nikodym derivative dℓ
dm

is a Borel-measurable function f : X → R+ such that:

ℓ(A) =
∫

A
f(x) dm(x), for all Borel sets A ⊆ X.
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Figure 5: Probability tree representation of two temporal lotteries with T = 2

Weak* Topology. The weak* topology on ∆b(X) is the coarsest topology such that
for all continuous and bounded functions f : X → R, the map:

µ 7→
∫

X
f(x) dµ(x)

is continuous. With this topology, µn converges to µ in the weak* topology if and
only if: ∫

X
f(x) dµn(x) →

∫
X

f(x) dµ(x) for all such f.

A.2 Measuring preference for information

To measure attitudes toward early resolution, I introduce the following notion of early
resolution premium. This notion quantifies how much a DM is willing to pay to have
risk resolve at t = 1 rather than gradually. Assume for simplicity that T = 2, and
consider the temporal lotteries given c0, k > 0, x > y > 0

dgradual(ε) =
(

c0,
1
2

(
k,
((1

2 + ε

2

)
x ⊕

(1
2 − ε

2

)
y
))

⊕1
2

(
k,
((1

2 + ε

2

)
x ⊕

(1
2 − ε

2

)
y
)))

.

and
dearly(π) =

(
c0,

1
2 (k(1 − π), x(1 − π)) ⊕ 1

2 (k(1 − π), y(1 − π))
)

.

In words, the gradual lottery resolves late when ε = 0 and early when ε = 1. In
contrast, the early lottery resolves always early but the payoffs are discounted by a
factor of (1 − π). See Figure 5 for a graphical representation of these lotteries.

Consider preferences ⪰ with KP representation (ϕ, u, β), where ϕ ∈ C2 is concave
and satisfies UPI. Moreover, I assume u(x) = x to simplify calculations. Because ϕ
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satisfies UPI, by Proposition 1 we have that V0
(
dearly (0)

)
≥ V0

(
dgradual (ε)

)
, and as

we increase π, V0(dearly(π)) decreases, so that we can denote with π(ε) the unique
solution to the equation

V0(dgradual(ε)) = V0(dearly(π)).

The timing premium π(ε) therefore quantifies how much one is willing to pay to have
risk resolve at t = 1 rather than more gradually as measured by the parameter ε.
The next corollary of Proposition 1 provides an approximation of π(ε) near ε = 1.

Corollary 2. There exists a constant k1 > 0 such that for every ε ∈ [0, 1].

π(ε) = k1

∫ x

y

ϕ′(k + βz)
ϕ′(z) ERϕ(z, k)dz (1 − ε) + o (ε − 1) .

Proof. See the Appendix.

Therefore, the premium is approximated by an average of the values of ERϕ(z, k)
over the interval [y, x]. As the measure increases, the premium increases.

A.3 Intertemporal hedging

Here I discuss the difference between my notion of correlation aversion with Ko-
chov’s (2015) notion of intertemporal hedging. Consider the temporal lotteries d =
(c0, m), d′ = (c0, m′) ∈ D0,s where for some x, y ∈ C we have m′

1(x) = m1(x) = 1
2 ,

m2(x|x) = m2(y|y) = 1, and m′
2(y|x) = m′

2(x|y) = 1. Figure 6 provides a graphical
representation of these two lotteries. The lottery d is obtained by applying an IECIT
with ε = 1

2 . The lotteries d and d′ have perfect positive and negative correlation,
respectively.

We can immediately see that d ≥B d′ and d′ ≥B d, meaning that d and d′ are
equally informative. The strict preference for d′ over d, is referred to as correlation
aversion by Bommier (2007) and intertemporal hedging by Kochov (2015). I adopt
the latter terminology as it reflects the fact that with their being equally informative
only hedging considerations affect the evaluations of these two lotteries. The next
result demonstrates that intertemporal hedging is equivalent to the concavity of ϕ

(i.e., risk aversion).

Proposition 4. Preferences ⪰ with KP representation (ϕ, u, β) exhibit intertemporal
hedging if and only if ϕ is concave.
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Figure 6: Negative vs positive correlation

Proof. Observe that intertemporal hedging is equivalent to

1
2ϕ(x + βx) + 1

2ϕ(y + βy) ≤ 1
2ϕ(y + βx) + 1

2ϕ(x + βy),

for every x, y ∈ u(X). Therefore, the statement follows by a straightforward applica-
tion Theorem 4(a) in Epstein and Tanny (1980).

Observe that under the assumptions of Theorem 1, correlation aversion implies
that ϕ is concave. Hence, from Proposition 4 we can infer that under these assump-
tions correlation aversion implies intertemporal hedging.

A.4 Extension to lotteries with infinite support

Note that here we operate under the convention that if Y ⊆ X, then ∆b(Y ) ⊆ ∆b(X)
by identifying each probability measure in ∆b(Y ) with the equivalent probability
measure in ∆b(X) that assigns probability 1 to Y . Endow ∆b(X) with the weak∗

topology.
The extension uses the following notion a uniformly bounded sequence of temporal

lotteries.

Definition 9 (Uniformly bounded temporal lotteries). Say that a sequence (c, mn)∞
n=0

in D0 is uniformly bounded if there exists a compact set K ⊆ R such that for some
K

mn ∈ ∆b(K × ∆b(K)) eventually.

The idea is that d ∈ D0 is considered more correlated than d′ ∈ D0 if both can
be approximated by sequences of uniformly bounded simple lotteries (c, mn)∞

n=0 and
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(c, m′
n)∞

n=0, respectively, where each (c, mn) is more correlated than (c, m′
n). Correla-

tion aversion then implies that d′ is preferred to d.

Proposition 5. Assume that the preferences ⪰ exhibit correlation aversion. Consider
d, d′ ∈ D0 such that there exist uniformly bounded sequences (c, mn)∞

n=0 and (c, m′
n)∞

n=0

in D∗
0,s, and a sequence (ℓn)∞

n=0 in ∆s(C), satisfying:

lim
n→∞

(c, mn) = d, lim
n→∞

(c, m′
n) = d′,

and for every n ≥ 0,
(c, mn) ≥C (c, m′

n) ≥C diid(ℓn).

Then d′ ⪰0 d.

A.5 The persistence premium and long-run risk

We have that (see Epstein et al. (2014), pp. 2684-2685)

log U0(dcorr) = log c0 + β

1 − βa
x0 + β

1 − β
m + α

2
βσ2

1 − β

(
1 + φ2β2

(1 − βa)2

)
,

and
log U0(diid) = log c0 + βx0 + β

1 − β
m + α

2
βσ2

1 − β

(
1 + φ2β2

)
.

Therefore, we obtain

π = 1 − U0(dcorr)
U0(diid) = 1 − e

β
1−βa

x0−βx0+ α
2

βσ2
1−β

(
φ2β2

(1−βa)2 −φ2β2
)
.

π = 1 − exp
(

−6.5 × 0.998 × 0.00782

2(1−0.998)

(
0.0442 × 0.9982

(1−0.998×0.979)2 − 0.0442 × 0.9982
))

≈ 0.302,

π = 1 − exp
(

−9 × 0.998 × 0.00782

2(1−0.998)

(
0.0442 × 0.9982

(1−0.998×0.979)2 − 0.0442 × 0.9982
))

≈ 0.393.

Therefore, we have that π ≈ 30% with 1 − α = 7.5 and π ≈ 40% with 1 − α = 10.
Note that these results do not change significantly if one increases the long-run

volatility of the iid process to match the volatility of the persistent process. Consider
for example the case 1 − α = 7.5. Observe that

lim
t→∞

Var
(

log ct+1

ct

)
= σ2 + φ2σ2

1 − a2 ,
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so that by setting σ ≈ 0.0079719 we obtain that the two processes have the same
long-run volatility:

0.00782 + 0.0442 × 0.00782

1 − 0.9792 = σ2 + 0.0442σ2.

With this level of persistence in the i.i.d. process, when 1 − α = 7.5, we obtain the
persistence premium:

1 − exp
(

− 6.5
2 × 0.998 × 0.00782

1 − 0.998

(
1 + 0.0442 × 0.9982

(1 − 0.979 × 0.998)2

)

+6.5
2 × 0.998 × 0.00797192

1 − 0.998
(
1 + 0.0442 × 0.9982

))
≈ 0.299790.

A.6 Measuring risk aversion

Recall that from equation (9) we have that the measure of correlation aversion is
given by

∆%
P OS = 1 − u−1(V0(dcorr))

u−1(V0(diid)) .

The lotteries considered in Rohde and Yu (2024) feature risk at t = 0. However, since
EZ preferences are stationary, one can equivalently consider the pair of temporal
lotteries given by

dcorr =
(
0, 1

2 (10, 10) ⊕ 1
2 (5, 5)

)
.

and
diid =

(
0, 1

2

(
10,

(
1
210 ⊕ 1

25
))

⊕ 1
2

(
5,
(

1
210 ⊕ 1

25
)))

.

Here, I assume that t = 1 equals 4 weeks, as in the first time frame considered by
Rohde and Yu (2024). Since the time unit is 4 weeks, we can apply the monthly
discount factor β = 0.998 used in Bansal and Yaron (2004). In this case, we have

u−1 (V0 (dcorr)) = u−1
{

0.998ϕ−1 (ϕ (u(5) + 0.998u(5)) + ϕ (u(10) + 0.998u(10)))
}

,

and

u−1
(
V0
(
diid

))
= u−1

{
0.998ϕ−1

(
ϕ
(

u(5) + 0.998ϕ−1
(1

2ϕ(u(5)) + 1
2ϕ(u(10))

))
+ϕ

(
u(10) + 0.998ϕ−1

(1
2ϕ(u(5)) + 1

2ϕ(u(10))
)))}
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I consider the mean value
∆%

P OS = 0.008

found in their experiment (Rohde and Yu, 2022, p. 55). This value corresponds
to the time-risk framing of their experiment, which encouraged subjects to consider
correlation over time.

When 1
1−ρ

= 1.5—a common specification in the long-run risk literature (Bansal
and Yaron, 2004) we can match this level of correlation aversion by setting α =
−0.61

3 ≈ −0.2 since in this case we obtain

1 − u−1(V0(dcorr))
u−1(V0(diid)) ≈ 0.008.

When ρ ≈ 0, by setting α ≈ −0.0345 we obtain

1 − u−1(V0(dcorr))
u−1(V0(diid)) ≈ 1 −

(
51.998α+101.998α

2

) 0.998
α

(
1
2 (5α + 10α)

) 1.996
α

≈ 0.008.

Note that when α ≈ −0.0345, we have that the persistence premium π is close to
zero since

π = 1 − exp
(

(−0.711) × 0.998 × 0.00782

2 × (1 − 0.998)

(
0.0442 × 0.9982

(1 − 0.998 × 0.979)2 − 0.0442 × 0.9982

))
≈ 0.0019,

a more reasonable value in terms of introspection and consistent with the evidence
in Meissner and Pfeiffer (2022), which shows that 40% of subjects have a zero timing
premium.

A.7 The persistence premium and HARA recursive prefer-
ences

First observe that for every β ∈ (0, 1] and x, y ≥ 0

−
ϕ′′

γ,b(x)
ϕ′

γ,b(x) + β
ϕ′′

γ,b(βx + y)
ϕ′

γ,b(βx + y) =
 1

x
1−γ

+ b
− β

1
βx+y
1−γ

+ b


=

 1
x

1−γ
+ b

− 1
x+ y

β

1−γ
+ b

β

 ≥ 0,
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which implies that UPI is satisfied. Further, we have that for x > 0

Rϕγ,b
(x) = x

x
1−γ

+ b
= 1

1
1−γ

+ b
x

.

so that IRRA is satisfied whenever b ≥ 0. Now observe that in the EZ case b = 0 so
that:

−
ϕ′′

γ,0(x)
ϕ′

γ,0(x) + β
ϕ′′

γ,0(βx + y)
ϕ′

γ,0(βx + y) = (1 − γ)y
x(βx + y) ≥ 0,

which implies that if risk aversion goes to infinity, i.e. if γ → −∞ then

−
ϕ′′

γ,0(x)
ϕ′

γ,0(x) + β
ϕ′′

γ,0(βx + y)
ϕ′

γ,0(βx + y) → +∞. (13)

Finally, we have that when β is close to unity

lim
γ→−∞

−
ϕ′′

γ,0(x)
ϕ′

γ,0(x) + β
ϕ′′

γ,0(βx + y)
ϕ′

γ,0(βx + y) = 1 − β

b
≈ 0.

Hence, high levels of risk aversion are compatible with a small demand for non-
instrumental information if we assume “large” values of b, while by (13) for b ≈ 0 one
can have high levels of risk aversion compatible with high demand of non-instrumental
information.

To illustrate, assume that u(x) = 3x1/3 and ϕγ,b with γ = −2, and b = 0.72.
Consider the temporal lotteries from Rohde and Yu (2024)

dcorr =
(
0, 1

2 (10, 10) ⊕ 1
2 (5, 5)

)
.

and
diid =

(
0, 1

2

(
10,

(
1
210 ⊕ 1

25
))

⊕ 1
2

(
5,
(

1
210 ⊕ 1

25
)))

.

We obtain that
∆%

P OS = 1 − u−1(V0(dcorr))
u−1(V0(diid)) ≈ 0.0341.

If we assume that γ = −27 and b = 0, that is a standard EZ parametrization in
which γ = α

ρ
, 1 − α = 10, 1

1−ρ
= 1.5. In this case I obtain

∆%
P OS = 1 − u−1(V0(dcorr))

u−1(V0(diid)) ≈ 0.0341.

Hence, these different formulation of recursive HARA preferences and EZ prefer-
ences attain the same level of correlation aversion. However, in the former case, we
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obtain an average value of the measure of preference for information ERϕ(x, x) equal
to
∫ u(10)

u(5)
ERϕ(x, x)dx =

∫ u(10)

u(5)

 1
x
3 + 0.722 − 1

1
3

(
x + x

0.998

)
+ 0.722

0.998

 dx = 0.212242,

as opposed to the EZ preferences:∫ u(10)

u(5)
ERϕ(x, x)dx =

∫ u(10)

u(5)

(1 + 27)x
x(0.998x + x)dx = 3.23792,

and a level of relative risk aversion∫ u(10)

u(5)
Rϕ(x)dx =

∫ u(10)

u(5)

1(
1
3 + 0.722

x

)
5

dx = 0.581891,

as opposed to relative risk aversion of 1 − (−27) = 28 under EZ preferences. Hence,
recursive HARA preferences achieve a comparable level of correlation aversion as EZ
preferences under the standard parametrization, but they exhibit a much more limited
level of relative risk aversion that is consistent with empirical evidence and a small
preference for information.

A.8 Income taxation and social mobility

The steady level of aggregate welfare is derived in Appendix B in Park (2009) under
the difference that ρ and β are switched in the present notation. Here we assume
that σ2

ε = ω2 and µε = −ω2

2 . The values of the parameters are those in Table 3.

Figure 7: Optimal progressive tax rate as
a function of τ(γ = −9, ϕ = 0).

Figure 8: Optimal progressive tax rate as
a function of τ(γ = −9, ϕ = 0.6).
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β γ 1
η−1 ϕ λ µ ρ α k ω

0.2939 −9 0.2 0.6 0.625 0.375 0.25
0.625 0.35 1 1

Table 3: Parameters in the model

The steady state aggregate welfare as a function of τ ∈ [0, 1] is given by

(1 − β)λρ

(1 − β(α + ρλ))(1 − α − ρλ)

(
ln(1 − τ) + ln(ρβλ) − ln(1 − βα) + µ

η
ln
(

µ

η

)
+

µ

η
ln(1 − βα) − µ

η
ln(1 − β(α + ρλ(1 − τ))) + τ(2 − τ)λ2ω2

2(1 − ϕ2)(1 − α − ρλ + ρλτ)2

)

+ (1 − βα)(1 − β(α + ρλ))−1
(

µ

η
ln
(

µ

η

)
+ µ

η
ln(1 − βα) − µ

η
ln(1 − β(α + ρλ(1 − τ)))

)

− (µ/η)(1 − βα)
1 − β(α + ρλ(1 − τ))

+ λβ(1 − β(α + ρλ))−1 (ln k + ρ ln(1 − τ) + ρ ln(ρβλ) − ρ ln(1 − βα))

+ ln
(

1 − (1 − τ)ρβλ

1 − βα

)

+ γβ
λ2(1 − β)(1 − τ)2ω2

2(1 − ϕ2)(1 − βα − βρλ + βρλτ)2

+ (1 − βα)(1 − β(α + ρλ))−1τ(2 − τ) λ2ω2

2(1 − ϕ2)(1 − α − ρλ + ρλτ)2

The optimal τ ∗ ∈ [0, 1] maximizes the previous expression. When ϕ = 0, I obtain
that τ ≈ 0.4525. When ϕ = 0.6, I obtain that τ ≈ 0.5172 (see Figures 7 and 8).

Finally, observe that social mobility is higher under correlation averse preferences,
with τ ≈ 0.5172, rather than under correlation neutrality which implies τ ≈ 0.35
(Park (2009)). Indeed, when α = 0.35, λ = 0.625, β = 0.2939, ϕ = 0.6 we obtain

(α + λβ(1 − 0.5172))(1 − ϕ) + ϕ = 0.775 < 0.7878 = (α + λβ(1 − 0.35))(1 − ϕ) + ϕ.

Hence, social mobility is higher under correlation averse preferences.
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A.9 Proofs

Proof of Proposition 1. The proof uses the functions Ut : ∆s(Dt+1,s) → R, defined
for c̄ ∈ C and t = 1, . . . , T − 2 by

Ut(m) = ϕ
(
u(c̄) + βϕ−1 (Emϕ(Vt+1))

)
for every m ∈ ∆s(Dt+1,s). (14)

Lemma 1. Each Ut defined in (14) is convex if and only if (3) holds.

Proof. First I claim that each Ut defined in (14) is convex if and only if the function
Φ : ϕ(u(C)) → R defined by x 7→ ϕ(c̄+βϕ−1 (x)) is convex. To see this point, observe
that for every c̄ ∈ C we have that

Ut(αm + (1 − α)m′) ≤ αU(m) + (1 − α)U(m′) ⇐⇒

ϕ
(
c̄ + βϕ−1 (αEmϕ (Vt+1) + (1 − α)Emϕ(Vt+1))

)
≤

αϕ
(
c̄ + βϕ−1 (Emϕ (Vt+1))

)
+ (1 − α)ϕ

(
c̄ + βϕ−1 (Em′ϕ (Vt+1))

)
.

Since u(C) is unbounded above and the statement above must hold for every m, m′ ∈
∆s(Dt+1,s) it follows that convexity of Ut is equivalent to

ϕ
(
c̄ + βϕ−1 (αx + (1 − α)y)

)
≤ αϕ

(
c̄ + βϕ−1 (x)

)
+ (1 − α)ϕ

(
c̄ + βϕ−1 (y)

)
,

for every x, y ∈ ϕ(u(C)) which is equivalent to convexity of Φ for every c̄ ∈ u(C).
Finally, the claim follows by using Lemma 3 in Strzalecki (2013).

Lemma 2. It holds that
dearly

KP ≥B dlate
KP .

Proof. First observe that since

dearly
KP =

(
c0,

n⊕
i=1

πi (c1, c2i, mi)
)

and
(

c0, c1,
n⊕

i=1
πi (c2i, mi)

)
= dlate

KP ,

we have that margC

⊕n
i=1 πi (c1, c2i, mi) = δc1 = margC (c1,

⊕n
i=1 πi (c2i, mi)). Further-

more, the lotteries

marg∆s(D2,s)

(
c1,

n⊕
i=1

πi (c2i, mi)
)

= δ⊕n

i=1 πi(c2i,mi) ∈ ∆s (∆s (D2,s)) ,

and
marg∆s(D2,s)

n⊕
i=1

πi (c1, c2i, mi) =
n⊕

i=1
πiδ(c2i,mi) ∈ ∆s (∆s (D2,s)) ,
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can be associated with the matrix-vector pairs

M
[
marg∆s(D2,s) δ⊕n

i=1 πi(c2i,mi)

]
=
[
π1 . . . πn

]
,

M
[
marg∆s(D2,s)

⊕n
i=1 πiδ(c2i,mi)

]
= I, where I denotes the identity matrix,

µ
[
marg∆s(D2,s) δ⊕n

i=1 πi(c2i,mi)

]
= [1] and µ

[
n⊕

i=1
πiδ(c2i,mi)

]
= [π1 . . . πn] .

Now by setting G :=
[
π1 . . . πn

]
we obtain that

M
[
marg∆s(D2,s) δ⊕n

i=1 πi(c2i,mi)

]
=
[
π1 . . . πn

]
I = GM

[
marg∆s(D2,s)

n⊕
i=1

πiδ(c2i,mi)

]
,

and

µ
[
marg∆s(D2,s) δ⊕n

i=1 πi(c2i,mi)

]
G = [1]

[
π1 . . . πn

]
= [π1 . . . πn] = µ

[
n⊕

i=1
πiδ(c2i,mi)

]
.

Hence, we can conclude that dearly
KP ≥B dlate

KP as desired.

Proof of Proposition 1. Note that if ϕ satisfies (3), then each Ut is convex by Lemma
1. By Lemma 2, marg∆s(D2,s) (c1,

⊕n
i=1 πi (c2i, mi)) = δ⊕n

i=1 πi(c2i,mi) is a garbling of
marg∆s(D2,s)

⊕n
i=1 πi (c1, c2i, mi) = ⊕n

i=1 πiδ(c2i,mi). By Theorem 4 in Kihlstrom (1984),
it follows that

n∑
i=1

πiW ((c2i, mi)) ≥ W

(
n⊕

i=1
πi (c2i, mi)

)
,

for every convex function W : ∆s(D2,s) → R.
Observe that

V0
(
dearly

KP

)
≥ V0

(
dlate

KP

)
⇐⇒

n∑
i=1

πiϕ (u(c1) + βV2 (c2i, mi)) ≥ ϕ

(
u(c1) + βϕ−1

(
n∑

i=1
πiϕ (V2 (c2i, mi))

))
.

Since
n∑

i=1
πiU1 ((c2i, mi)) =

n∑
i=1

πiϕ (u(c1) + βV2((c2i, mi)))

and
U1

(
n⊕

i=1
πi(c2i, mi)

)
= ϕ

(
u(c1) + βϕ−1

(
n∑

i=1
πiϕ (V2((c2i, mi)))

))
,
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which by convexity of U1 we obtain ∑n
i=1 πiU1 ((c2i, mi)) ≥ U1 (⊕n

i=1 πi(c2i, mi)), and
therefore that dearly

KP ⪰0 dlate
KP .

Conversely, consider d, d′ ∈ D0,s given by

d = (c0, α (c̄, m1) ⊕ (1 − α) (c̄, m2)) ,

and
d′ = (c0, c̄, αm1 ⊕ (1 − α)m2) ,

where α ∈ [0, 1] and V2(m1) = x, V2(m2) = y. We have that d ⪰0 d′ if and only if

αϕ(c̄ + βϕ−1(x)) + (1 − α)ϕ(c̄ + βϕ−1(y)) ≥ ϕ(c̄ + βϕ−1(αx + (1 − αy))).

Since the statement has to hold for arbitrary x, y ∈ u(C) (recall that u is unbounded
above) and α ∈ [0, 1], it follows that the mapping x 7→ ϕ(c̄ + βϕ−1 (x)) must be
convex. Hence an immediate application of Lemma 1 concludes the proof.

Proof of Proposition 3.

Proof. Denote with {c, c′, . . . , cN} the support of ℓ ∈ ∆s(C). It suffices to show that if
d′ ∈ D∗

0,s differs from some diid(ℓ) ∈ D∗
0,s by an IECIT and d ∈ D∗

0,s differs from d′ by
an IECIT then d ≥B d′ ≥B diid(ℓ). Suppose that d′ differs from diid(ℓ) by an IECIT
and that d differs from d′ by an IECIT. First observe that d = (c0, m), d′ = (c0, m′)
where margC m′ = margC m since by definition of an IECIT m1 = m′

1. Now consider
the stochastic matrices of conditional distributions for d and d′:

A := M
[
marg∆s(C) m

]
=



m2(c|c) m2(c′|c) . . . m(cN |c)
m2(c|c′) m2(c′|c′) . . .

...
... ... . . . ...

m2(c|cN) m2(c′|cN) . . . m2(cN |cN)

 ,

and

B := M
[
marg∆s(C) m′

]
=



m′
2(c|c) m′

2(c′|c) . . . m(cN |c)
m′

2(c|c′) m′
2(c′|c′) . . .

...
... ... . . . ...

m′
2(c|cN) m′

2(c′|cN) . . . m′
2(cN |cN)

 .

Then for some ε, ε′ ≥ 0m2(c|c) m2(c′|c)
m2(c|c′) m2(c′|c′)

 =
 m′

2(c|c) + ε
ℓ(c) m′

2(c′|c) − ε
ℓ(c)

m′
2(c|c′) − ε

ℓ(c′) m′
2(c′|c′) + ε

ℓ(c′)

 ,
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and m′
2(c|c) m′

2(c′|c)
m′

2(c|c′) m′
2(c′|c′)

 =
ℓ(c) + ε′

ℓ(c) ℓ(c′) − ε′

ℓ(c)

ℓ(c) − ε′

ℓ(c′) ℓ(c′) + ε′

ℓ(c′)

 .

Hence, if we choose x1, x2 ∈ [0, 1] satisfying x1( ε+ε′

ℓ(c) ) − (1 − x1)( ε+ε′

ℓ(c′) ) = ε′

ℓ(c) and
x2( ε+ε′

ℓ(c) ) − (1 − x2)( ε+ε′

ℓ(c′) ) = ε′

ℓ(c′) , then letting

G :=



x1 1 − x1 0 . . . 0
x2 1 − x2 0 . . . 0
0 0 1 . . . 0
... ... ... . . .

0 ... ... 0 1


it holds that

B = GA,

which implies that d ≥B d′. If instead we choose x1 = x2 =
ℓ(c)
ℓ(c′)

1+ ℓ(c)
ℓ(c′)

then we obtain
that 

ℓ(c) ℓ(c′) . . . ℓ(cN)
ℓ(c) ℓ(c′) . . .

...
... ... . . . ...

ℓ(c) ℓ(c′) . . . ℓ(cN)

 = GB,

which implies d′ ≥B diid(ℓ) as desired.

Proof of Theorem 1. Let d, d′ ∈ D∗
0,s and ℓ ∈ ∆s(C). I provide first the following

preliminary result.

Lemma 3. Consider d, d′ such that d′ differs from some diid(ℓ) by an IECIT and
d differs from d′ by an IECIT. Then there exists a twice continuously differentiable
function U : [0, 1] → R such that

1. U(0) = V0(d) and U(1) = V0(d′);

2. limε→0 U ′(ε) ≤ 0 whenever d = diid(ℓ);

3. U ′′(ε) ≥ 0 for every ε ∈ (0, 1).

Proof. See Section S.3 in the Supplemental Appendix.
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It is now possible to prove Theorem 1. To this end, given ℓ ∈ ∆s(C), denote with
dcorr(ℓ) = (c, m) ∈ D∗

0,s defined by m1 = ℓ and m2(c|c) = 1 for every c ∈ supp ℓ.

Proof of Theorem 1. Assume that ϕ satisfies IRRA and that d ≥C d′ ≥C diid(ℓ). I
claim that

diid(ℓ) ⪰0 d′ ⪰0 d,

for every ⪰ with KP representation (ϕ, u, β). By Lemma 3, there exists U : [0, 1] → R
such that for some q1, q2 ∈ [0, 1] with q1 < q2 it holds that U(0) = V0(diid(ℓ)),
U(q1) = V0(d′), U(q2) = V0(d), U(1) = V0(dcorr(ℓ)), limε→0 U ′(ε) ≤ 0, and U ′′(ε) ≥ 0
for every ε ∈ (0, 1) (where derivatives are intended in the weak sense, see Section 8.2
in Brezis 2010).7 I claim that it also holds that

lim
ε→1

U ′(ε) ≤ 0.

Indeed, we have that for some p, q ∈ (0, 1) and x, y ∈ u(C) such that x > y

lim
ε→1

U ′(ε) = lim
ε→1

∂

∂ε

pϕ
(
x + βϕ−1 (ϕ(x) (p + qε) + ϕ(y) (q − qε))

)
+

qϕ
(
y + βϕ−1 (ϕ(x) (p − pε) + ϕ(y) (q + pε))

) 
≤ (ϕ(x) − ϕ(y))

(
ϕ′((1 + β)x)

ϕ′(x) − ϕ′((1 + β)y)
ϕ′(y)

)

= (ϕ(x) − ϕ(y))
∫ x

y

(1 + β)ϕ′′(z(1+β))
ϕ′(z(1+β)) − ϕ′′(z)

ϕ′(z)

(ϕ′(z))2 dz ≤ 0,

where the last inequality follows by the fact that ϕ satisfies IRRA, upon observing
that

(1 + β)ϕ′′(z(1 + β))
ϕ′(z(1 + β)) − ϕ′′(z)

ϕ′(z) ≤ 0 ⇐⇒ −z(1 + β)ϕ′′(z(1 + β))
ϕ′(z(1 + β)) ≥ −z

ϕ′′(z)
ϕ′(z) .

7By applying Lemma 3, if there is a sequence (di)N
i=0 such that each di differs from di−1 by an

IECIT, then one can construct a continuous function U : [0, 1] → R that admits weak derivatives
U ′, U ′′. Indeed, one can first apply Lemma 3 to obtain functions (Ui)N

i=1 and setting U(x) = Ui

(
Nx

i

)
for x ∈

[
i−1
N , i

N

)
, i = 1, . . . , N − 1, and U(x) = UN (x) for x ∈

[
N−1

N , 1
]
. Note that each Ui is

continuously differentiable, which implies that U is piecewise Lipschitz continuous. By Lemma 2
in Leobacher and Steinicke (2022), it follows that U is Lipschitz continuous and therefore weakly
differentiable. The same reasoning also applies to U ′.
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Applying the fundamental theorem of calculus for weak derivatives (see Theorem
8.2 in Brezis 2010), it follows that limε→1 U ′(ε) − U ′(ε̃) =

∫ 1
ε̃ U ′′(t)dt ≥ 0 for every

ε̃ ∈ (0, 1), which further implies that

V0(d′) − V0(diid(ℓ)) =
∫ q1

0
U ′(ε̃)dε̃ ≤ 0,

and
V0(d′) − V0(d) =

∫ q2

q1
U ′(ε̃)dε̃ ≤ 0.

Hence we obtain diid(ℓ) ⪰0 d ⪰0 d′ for every ⪰ with KP representation (ϕ, u, β) as
desired.

As for the converse, assume that ϕ is not concave. Then there exist x > y > 0
such that for every z ∈ (y, x),

ϕ′′ (z(1 + β)) > 0. (15)

Consider the lottery diid(ℓ) with ℓ(x) = ℓ(y) = 1
2 . For each ε ∈ [0, 1], define dε(ℓ) =

(c0, m) by setting m2(x|x) = ℓ(x)+ 1
2ε and m2(y|y) = ℓ(y)+ 1

2ε. Then, dε(ℓ) ≥C diid(ℓ).
Define the function U : [0, 1] → R by U(ε) = V0(dε(ℓ)). Using equation (15) and the
reasoning analogous to Lemma 3, we obtain

lim
ε→0

U ′(ε) = (ϕ(x) − ϕ(y))
ϕ′
(
ϕ−1

(
ϕ(x)+ϕ(y)

2

)) ∫ x

y
ϕ′(z)ϕ′′ (z(1 + β)) dz > 0,

which implies there exists ε̄ ∈ (0, 1) such that U ′(ε̃) > 0 for all ε̃ ∈ (0, ε̄). Conse-
quently,

V0(dε̄(ℓ)) − V0(diid(ℓ)) =
∫ ε̄

0
U ′(ε) dε > 0,

and thus dε̄(ℓ) ≥C diid(ℓ) but dε̄(ℓ) ≻0 diid(ℓ). Hence, ϕ must be concave.
Finally, suppose that ϕ does not satisfy IRRA. Since ϕ ∈ C3, the function Rϕ

is continuously differentiable. Thus, there exist
¯
z < z̄ in int u(C) such that Rϕ is

non-increasing on the interval [
¯
z, z̄] and Rϕ(z̄) < Rϕ(

¯
z). Choose β ∈ (0, 1] so that

z̄
1+β

>
¯
z, and set x = z̄

1+β
and y =

¯
z. Consider again the lottery diid(ℓ) with

ℓ(x) = ℓ(y) = 1
2 , and define the lottery dε(ℓ) = (c0, m) with m2(x|x) = ℓ(x) + 1

2ε and
m2(y|y) = ℓ(y) + 1

2ε. For ε ≥ ε′, it holds that dε(ℓ) ≥C dε′(ℓ) ≥C diid(ℓ).
As before, define U : [0, 1] → R by U(ε) = V0(dε(ℓ)). Applying analogous reason-

ing to Lemma 3, we have

lim
ε→1

U ′(ε) ∝ (ϕ(x) − ϕ(y))
∫ x

y

(1 + β)ϕ′′(z(1+β))
ϕ′(z(1+β)) − ϕ′′(z)

ϕ′(z)

(ϕ′(z))2 dz > 0,
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which implies the existence of some ε̄ < 1 such that U ′(ε̃) > 0 for all ε̃ ∈ [ε̄, 1). Hence,

V0(d1(ℓ)) − V0(dε̄(ℓ)) =
∫ 1

ε̄
U ′(ε) dε > 0,

thus establishing d1(ℓ) ≥C dε̄(ℓ) ≥C diid(ℓ) but d1(ℓ) ≻0 dε̄(ℓ). Therefore, ϕ must
satisfy IRRA.

Proof of Corollary 1.

Proof. Observe that if we set

f(ε) = 1
2ϕ

(
x + βϕ−1

(
ϕ(x)

(1
2 + ε

2

)
+ ϕ(y)

(1
2 − ε

2

)))
+ 1

2ϕ
(

y + βϕ−1
(

ϕ(x)
(1

2 − ε

2

)
+ ϕ(y)

(1
2 + ε

2

)))
,

and

g(π) = 1
2ϕ

(
x(1 − π) + βϕ−1

(
ϕ(x(1 − π))1

2 + ϕ(y(1 − π))1
2

))
+ 1

2ϕ
(

y(1 − π) + βϕ−1
(

ϕ(x(1 − π))1
2 + ϕ(y(1 − π))1

2

))
,

then the equation V0(dcorr(ε)) = V0(diid(π)) is equivalent to f(ε) = g(π).
Since ϕ ∈ C3, we can take the second and first order approximations of f and g,

respectively. We obtain that f(ε) = f(1) + f ′(1)(ε − 1) + f ′′(1)(ε − 1)2 + o ((ε − 1)2)
and g(π) = g(0) + g′(0)π + o (π). Setting these expressions equal, we obtain

π(ε) = f(1) − g(0)
g′(0) + f ′(1)

g′(0) (ε − 1) + f ′′(1)
g′(0) (ε − 1)2 + o

(
(ε − 1)2

)
.

Furthermore, note that f(1) = V0(dcorr(1)), g(0) = V0(diid(0)), and g′(0) < 0, since
the value of the lottery obviously is decreasing in π. The same calculations as in the
proof of Theorem 1 reveal that

f ′(1) = −β
(ϕ(x) − ϕ(y))

4

∫ x

y

ϕ′(z(1 + β))
ϕ′(z)

{Rϕ(z(1 + β)) − Rϕ(z)}
z

dz,

and

f ′′(1) = β2 (ϕ(x) − ϕ(y))2

8

{
ϕ′(x(1 + β))

ϕ′(x) ERϕ(x, x) + ϕ′(y(1 + β))
ϕ′(y) ERϕ(y, y)

}
.

which by setting k1 = − 1
g′(0) , k2 = −β (ϕ(x)−ϕ(y))

4g′(0) , and k3 = β2 (ϕ(x)−ϕ(y))2

8g′(0) implies the
desired result.
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Proof of Theorem 2. Outline of the proof. Using a general result from Hardy
et al. (1952) on certainty equivalents, I show that SCA implies that the certainty
equivalent ϕ−1 (Emϕ (Vt+1)) is concave in utilities.8 This result allows us to utilize
the Fenchel-Moreau duality theorem, revealing that the certainty equivalent can be
represented dually as ϕ−1 (Emϕ (Vt+1)) = minℓ EℓVt+1 + I t

ϕ,u,β(ℓ∥m).
I introduce first some important notation: given a measurable space (S, Σ), ca(Σ)

is the set of all countably additive elements of the set of charges ba(Σ), while ca+(Σ) =
ca(Σ)∩ba+(Σ) is its positive cone and ∆(Σ) is the set of countably additive probability
measures. Given p ∈ ba(Σ), let ba(Σ, p) = {v ∈ ba(Σ) : B ∈ Σ and p(B) = 0
implies v(B) = 0}. Observe that ba(Σ, p) is isometrically isomorphic (see Dunford
and Schwartz (1958), Theorem IV.8.16) to the dual of L∞(p) := L∞(S, Σ, p) and
ca(Σ, p) = ca(Σ) ∩ ba (Σ, p) is (isometrically isomorphic to) L1(p) (via the Radon-
Nikodym derivative ν 7→ dν

dp
).

Turning to the proof of Theorem 2, I first introduce important notions related to
quasi-arithmetic certainty equivalent functionals: given p ∈ ∆(Σ), let Mϕ,p : L∞(p) →
R ∪ {−∞} be defined by

ϕ−1
(∫

ϕ(ξ)dp
)

for every ξ ∈ L∞(p),

assuming that ϕ : R → R ∪ {−∞} is non-decreasing and upper semicontinuous.
I provide an important result concerning the concave conjugate M∗

ϕ,p of the quasi-
arithmetic mean Mϕ,p. Recall that by the aforementioned isometry between the dual
of L∞(p) and ba(Σ), the concave conjugate M∗

ϕ,p can be seen as a mapping M∗
ϕ,p :

ba(Σ, p) → R ∪ {∞} defined by

M∗
ϕ,p(q) = inf

ξ∈L∞(p)

∫
ξdq − Mϕ,p(ξ).

Lemma 4. It holds that M∗
ϕ,p ≤ 0 and M∗

ϕ,p(p) = 0 for every p ∈ ∆(Σ). Moreover,
M∗

ϕ,p is upper semicontinuous and concave when Mϕ,p is concave. Moreover, if ϕ(x) =
−∞ for any x < 0, ϕ′(x) > 0, ϕ′′(x) < 0 for every x > 0, and p ∈ ∆(Σ) has
finite support, then the concave conjugate satisfies M∗

ϕ,p(q) = −∞ whenever q ̸∈
∆(Σ) ∩ ca(Σ, p).

8Cerreia-Vioglio et al. (2011) provide a similar representation under the assumption that ϕ is
strictly increasing and concave (see their Theorem 24). However, their result significantly differs
from this one because they assume that u(C) = (−∞, ∞). This assumption is typically not satisfied
in applications, such as the standard Epstein-Zin case.
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Proof. Omitted.

Denote with L∞
+ (p) := {ξ ∈ L∞(p) : ξ ≥ 0} the non-negative orthant of L∞(p).

Theorem 3 (See Hardy et al. (1952) Theorem 106, Chudziak et al. (2019) or Gollier
(2001)). Consider ϕ : R → R strictly increasing, strictly concave, and twice differen-
tiable over (0, ∞). Then Mϕ,p|L∞

+ (p) is concave if and only if 1
Aϕ|(0,∞)

is concave.

Proof. If Aϕ is convex, it follows that by setting L∞
s,+(p) := {ξ ∈ L∞

s,+(p) : ξ =∑n
k=1 ak1Ak

, (ak)n
k=1 ∈ Rn

+}, one can apply Theorem 1 and Theorem 5 in Chudziak
et al. (2019) to show that Mϕ,p|L∞

s,+(p) is concave. Concavity of Mϕ,p|L∞
+ (p) follows

by the fact that L∞
s,+(p) is dense in L∞

+ (p). Conversely, if Mϕ,p|L∞
+ (p) is concave then

Mϕ,p|L∞
s,+(p) is also concave, which by Theorem 1 and Theorem 5 in Chudziak et al.

(2019) implies that Aϕ|(0,∞) must be convex.

Thanks to Theorem 3, we obtain the following powerful result, which shows that
the conjunction of DARA and SCA on ϕ implies the concavity of the quasi-arithmetic
mean Mϕ,p|L∞

+ (p).

Corollary 3. Assume that ϕ ∈ C4 is concave and satisfies UPI over (0, ∞). Then
R′′

ϕ ≥ 0 implies that Mϕ,p|L∞
+ (p) is concave. Conversely, if there exist x ∈ (0, ∞) such

that R′
ϕ(x) < 0 and R′′

ϕ(x) < 0 then Mϕ,p|L∞
+ (p) is not concave.

Proof. First observe that if ϕ satisfies UPI, then by DARA we have A′
ϕ ≤ 0. Further,

it is immediately evident that 1
Aϕ

is concave whenever

A′′
ϕ(x)Aϕ(x) ≥ 2(A′

ϕ(x))2,

for every x ∈ (0, ∞). This condition is equivalent to

xA′′
ϕ(x) ≥ 2x

(A′
ϕ(x))2

Aϕ(x) , (16)

for every x ∈ (0, ∞). Since R′
ϕ ≥ 0, we obtain that for every x ∈ (0, ∞) it holds that

Aϕ(x) ≥ −xA′
ϕ(x).

From this last condition we obtain that for every x ∈ (0, ∞)

−2A′
ϕ(x) ≥ 2x

(A′
ϕ(x))2

Aϕ(x) . (17)
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Therefore since
R′′

ϕ(x) = xA′′
ϕ(x) + 2A′

ϕ(x),

if R′′
ϕ ≥ 0 it follows that xA′′

ϕ(x) ≥ −2A′
ϕ(x) which by (17) implies that (16) is

satisfied. Hence we conclude that if ϕ satisfies SCA then 1
Aϕ

is concave. The result
therefore follows by Theorem 3.

Conversely, if there exist x ∈ (0, ∞) such that R′
ϕ(x), R′′

ϕ(x) < 0 we obtain that
−2A′

ϕ(x) < 2x
(A′

ϕ(x))2

Aϕ(x) and xA′′
ϕ(x) < −2A′

ϕ(x) which implies that (16) is violated,
and so by Theorem 3 we can conclude that Mϕ,p|L∞

+ (p) is not concave.

Now consider ⪰ with KP representation (ϕ, u, β). Without loss of generality,
assume u(C) = [0, ∞). I now show that letting

ϕ̂(x) =

ϕ(x) x ≥ 0

−∞ x < 0,

then Mϕ̂,p is concave if ϕ satisfies SCA.

Lemma 5. If ϕ : [0, ∞) → R satisfies SCA, then Mϕ̂,p is concave.

Proof. The proof is a simple consequence of Corollary 3 and therefore is omitted.

It is important to observe that both EZ and HS preferences satisfy SCA.

Corollary 4. Assume that ϕ is given by ϕ(x) = xλ

λ
for 0 ̸= λ < 1 or ϕ(x) = −e− x

θ

with θ > 0 for every x ∈ R+. Then Mϕ̂,p is concave.

Proof. Immediate from Theorem 3.

It is now possible to deliver a proof of Theorem 2.

Proof of Theorem 2. Consider the utility functions (Vt)T
t=0 from the KP representa-

tion (ϕ, u, β), observe that for every mt ∈ ∆b(Dt), where Dt is the Borel σ-algebra of
Dt, since each Vt : Dt → R, t = 0, . . . , T is upper semicontinuous in the weak∗ topol-
ogy, we have Vt ∈ L∞

+ (Dt, Dt, mt) := L∞
+ (mt). If ϕ satisfies SCA, then by Lemma 5 the

function Mϕ̂,mt
is concave for each t = 0, . . . , T − 1. By applying the Fenchel-Moreau

theorem (see Phelps (2009), p. 42) and Lemma 5 it follows that

Mϕ̂,mt
(ξ′) = inf

q∈∆(Dt,mt)
Eqξ − M∗

ϕ̂,mt
(q) for all ξ ∈ L∞(mt).
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Hence if for t = 0, . . . , T − 1 we set

I t
ϕ,u,β(ℓ||mt) :=

−M∗
ϕ̂,mt

(ℓ),

+∞ otherwise,

then one obtains that for every (c, mt) ∈ Dt,s

Vt(c, mt) = u(c) + β min
ℓ≪mt

{
EℓVt+1 + I t

ϕ,u,β(ℓ∥mt)
}

, (18)

where the infimum is attained because {ℓ ∈ ∆b(Dt+1) : ℓ ≪ mt} is a compact subset
of ∆b(Dt+1). Further, observe that by Lemma 4, each is I t

ϕ,u,β(·∥mt) is a convex
statistical distance in the sense of Liese and Vajda (1987).

Now consider the common parametrization of Epstein-Zin preferences used in
asset pricing with 1

1−ρ
> 1 and α < 0 (see Bansal and Yaron 2004). In this case, one

obtains (see Section 5.2 in Frittelli and Bellini 1997) that by setting q = α
α−ρ

,

I t
ϕ,u,β(ℓ∥mt) = EℓVt+1


(
Emt

[(
dℓ

dmt

)q])− 1
q

− 1

 ,

so that upon noticing that the Rényi divergence is given for any q > 0, q ̸= 1 (see
Van Erven and Harremos 2014) by

Rq(ℓ∥mt) = 1
q − 1 log

(
Emt

[(
dℓ

dmt

)q])
,

we obtain that for t = 0, . . . , T − 1

Iϕ,u,β(ℓ∥mt) = EℓVt+1

[
e

1−q
q

Rq(ℓ∥mt) − 1
]

. (19)

The Rényi divergence has applications in a variety of fields, including information
theory, statistics, and machine learning (see Sason 2022 for a review). This result was
already observed by Meyer-Gohde, who showed that in the EZ case, the cost function
can be expressed using Tsallis entropy (Rényi and Tsallis entropies are monotonic
functions of each other; see, for example, Wong and Zhang 2022).

Finally, notice that if there exists x ∈ (0, ∞) such that R′
ϕ(x) < 0 and R′′

ϕ(x) < 0
then by Lemma 3 Mϕ,p|L∞

+ (p) is not concave, and so equation (18) cannot hold for
every (c, mt) ∈ Dt,s.

Proof of Proposition 5. It suffices to prove the following result.
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Lemma 6. If (c, mn)∞
n=0 is a uniformly bounded sequence that converges to some

d ∈ D0, then limn V0(c, mn) = V0(d)

Proof. Observe that
K × ∆b(K), (20)

is a compact set whenever K is compact (e.g., see Theorem 15.11 in Aliprantis and
Border (2006)). Further observe that V2(c) = u(c) when restricted to a compact set K

is continuous and therefore bounded. It follows that V1(c, m) = u(c)+βϕ−1Em (ϕ(V2))
is continuous and therefore also bounded when restricted to the set (20). Finally, since
the set in (20) is compact, it follows that the set

∆b(K × ∆b(K)), (21)

is also compact. Therefore, we can conclude that when restricted to the set in (21)
the function V0(c, m) = u(c) + βϕ−1Em (ϕ(V1)) is continuous.

Proof of Corollary 2.

Proof. Observe that the equation V0(dgradual(ε)) = V0(dearly(π)) is equivalent to
f(ε) = g(π) if we set

f(ε) = 1
2ϕ

(
k + β ϕ−1

(
ϕ(x)

(1
2 + ε

2

)
+ ϕ(y)

(1
2 − ε

2

)))
+ 1

2ϕ
(

k + β ϕ−1
(

ϕ(x)
(1

2 − ε

2

)
+ ϕ(y)

(1
2 + ε

2

)))
,

and

g(π) = 1
2ϕ

(
k(1 − π) + β ϕ−1

(
ϕ(x(1 − π))1

2 + ϕ(y(1 − π))1
2

))
+ 1

2ϕ
(

k(1 − π) + β ϕ−1
(

ϕ(x(1 − π))1
2 + ϕ(y(1 − π))1

2

))
.

Since ϕ ∈ C2, one can take the first order approximations of f and g so that f(ε) =
f(1) + f ′(1)(ε − 1) + o ((ε − 1)) and g(π) = g(0) + g′(0)π + o (π). Setting these
expressions equal we obtain that

π(ε) = f(1) − g(0)
g′(0) + f ′(1)

g′(0) (ε − 1) + o ((ε − 1)) .
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Furthermore, note that since V0(dgradual(1)) = V0(dearly(0)), it follows that f(1) =
g(0). Moreover g′(0) < 0, since V0(dearly(π)) obviously decreases with π. The same
calculations as in the proof of Proposition 1 reveal that

f ′(1) = β
ϕ(x) − ϕ(y)

4

∫ x

y

ϕ′(k + βz)
ϕ′(z) ER(z, k)dz,

which setting k1 = −β ϕ(x)−ϕ(y)
4g′(0) implies the desired result.
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Van Erven, T. and Harremos, P. (2014). Rényi divergence and kullback-leibler diver-
gence. IEEE Transactions on Information Theory, 60(7):3797–3820.

Wakker, P. P. (2010). Prospect theory: For risk and ambiguity. Cambridge university
press.

Weil, P. (1989). The equity premium puzzle and the risk-free rate puzzle. Journal of
monetary economics, 24(3):401–421.

Werner, J. (2024). Ordinal representations and properties of recursive utilities. Work-
ing Paper, University of Minnesota.

Wong, T.-K. L. and Zhang, J. (2022). Tsallis and rényi deformations linked via a new
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Supplemental Appendix

This supplemental material contains two parts. Section S.1 extends the main results
to the case of an infinite horizon. Section S.2 provides a behavioral characterization
of strong correlation aversion. Section S.3 provides a proof of Lemma 3.

S.1 The case T = ∞

The theory presented thus far has focused on studying attitudes towards the corre-
lation between consumption at two separate periods. However, it is also possible to
consider more complex patterns of correlation, such as correlation between multiple
periods. Here I consider the case of an infinite time horizon. As the consumption set
C = [0, ∞) = R+ is identical to that of Epstein and Zin (1989), I follow their ap-
proach in introducing the set of temporal lotteries for the case of an infinite horizon,
with specific reference to their discussion on pages 940-944. The only deviation in
my approach is the use of ∆(X) to denote the set of Borel probabilities defined on
a metric space X (equipped with the weak∗ topology). For every b ≥ 1 and l > 0,
the sets of temporal lotteries D(b; l) and D(b) are defined in equations 2.3 and 2.5.
Moreover, equations 2.2-2.11 define all the relevant objects. I also make use of their
characterization of temporal lotteries in D(b).

Theorem S.1 (Theorem 2.2 in Epstein and Zin (1989)). For every b ≥ 1 we have
that

D(b) is homeomorphic to C × ∆̂(D(b)),

where

∆̂(D(b)) :=

m ∈ ∆(D(b)) : f (m2) ∈
⋃
l>0

∆(Y (b; l)), m2 = P2m

 .

Because of this result, each d ∈ D(b) can be identified with (c, m) ∈ C × ∆̂(D(b)).
Further, each m ∈ ∆̂(D(b)) can be equivalently identified with an element of

∆̂(C × ∆̂(D(b))).

Preferences are given by a weak order ⪰ over D(b). The utility function V : D(b) → R
is called recursive if it satisfies the following equation for every (c, m) ∈ C ×∆̂ (D(b)) ,

V (c, m) =
[
cρ + βϕ−1 [(Emϕ (V ))]ρ

]1/ρ
, 0 < ρ < 1, 0 < β < 1, (1)

1



where ϕ : [0, ∞) → R. The next result shows that (1) always has a solution, thus
making recursive utility well defined in this context.

Theorem S.2. Suppose that ϕ is concave, ρ > 0 and βbρ < 1. Then there exists a
V : D(b) → R that satisfies (1).

Proof. Denote by S+(D(b)) the set of functions that map from D(b) into positive real
numbers. Let h ∈ S+(D(b)) be defined as in p. 963 of Appendix 3 in Epstein and
Zin (1989). Further, define S+

h (D(b)) as follows

S+
h (D(b)) ≡

{
X ∈ S+(D(b)) : ∥X∥h ≡ sup

d∈D(b)

X(d)
h(d) < ∞

}
.

Define T : S+
h (D(b)) → S+

h (D(b)) by

T (X) =
[
cρ + βϕ−1 [(Emϕ (X))]ρ

]1/ρ
for every X ∈ S+

h (D(b)).

Let V ∗ be a continuous function such that

V ∗ (c0, m) = [cρ + β [Em (V ∗)]ρ]1/ρ
, ρ > 0, 0 < β < 1,

which exists uniquely by Theorem 3.1 in Epstein and Zin (1989) since ρ > 0 and
βbρ < 1.

Let T 0(V ∗) = T (V ∗) and T n(V ∗) = T (T n−1(V ∗)). By Jensen inequality

ϕ−1 (Eϕ(X)) ≤ EX for all X ∈ S+
h (D(b)) =⇒ T (V ∗) ≤ V ∗.

Further, it holds that T (V ∗) ⩾ 0. By induction, one obtains that the sequence
(T n(V ∗))∞

n=0 is non-increasing and bounded below. Therefore, we can define V ∈
S+

h (D(b)) as follows
V := lim

n→∞
T nV ∗,

I now claim that V solves (1). Since

T nV ∗ (c0, m) =
[
cρ + βϕ−1

[(
Emϕ

(
T n−1V ∗

))]ρ]1/ρ
for every m ∈ D(b),

the statement follows by the fact that

lim
n→∞

ϕ−1
[(
Emϕ

(
T n−1V ∗(m)

))]ρ
= ϕ−1

[(
Emϕ

(
lim

n→∞
T n−1V ∗(m)

))]ρ

= ϕ−1 [(Emϕ (V ))]ρ .
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Consider now a weak order ⪰ over D(b). Say that ⪰ admits a KP representation
(ϕ, ρ, β) if there exists V : D(b) → R that satisfies (1) and such that represents ⪰.
For every d ∈ D(b) one can define the present equivalent PE⪰(d) as the unique single
period consumption level c ∈ C such that d ∼ (c, 0), where 0 ∈ D(b) is the temporal
lottery that pays the constant zero level of consumption at every time period. Note
that PE⪰(d) is well defined since V (c, 0) = c.

Now observe that every m ∈ ∆̂(C × ∆̂(D(b))) and ⪰ with KP representation
(ϕ, ρ, β) induce the probability m⪰ over ∆b(C × ∆b(C)) defined as follows:

m⪰(A × B) = m(A × B⪰) for every closed A × B ⊆ C × ∆b(C),

where B⪰ = {ℓ ∈ ∆̂(D(b)) : ℓ⪰ ∈ B} and ℓ⪰ ∈ ∆b(C) is defined by ℓ⪰(A) =
ℓ({d ∈ D(b) : PE⪰(d) ∈ A}).1 In words, m⪰ describes the joint distribution between
consumption at time t+1 and the continuation temporal lottery, where each temporal
lottery is expressed in terms of one-period consumption. In this way, it is possible to
extend the order ≥C and the correlation aversion axiom as follows.

Definition S.1 (Correlation order with T = ∞). Fix a weak order ⪰ over D(b).
Consider d = (c, m), d′ = (c, m′) ∈ D(b). Say that d is more correlated than d′,
written d ≥C d′, if

m⪰, m′
⪰ ∈ ∆s(C × ∆s(C)) and (c, m⪰) ≥C (c, m⪰).

Correlation aversion can then be defined as in the main text, where now diid(ℓ) =
(c, m) denotes a temporal lottery such that (c, m⪰) = diid(ℓ) for some ℓ ∈ ∆s(C).

Definition S.2 (Correlation aversion with T = ∞). Say that ⪰ exhibits correlation
aversion if and only if for every l > 0 and d, d′ ∈ D(b)

d ≥C d′ ≥C diid(ℓ) =⇒ diid(ℓ) ⪰ d′ ⪰ d.

The main results of the paper carry over in the same way. Notice that due to the
stationary setting, here there is a unique cost function I(ϕ,u,β)(·, ·).

Theorem S.3. Consider ϕ ∈ C3 that is concave and satisfies UPI. Then every ⪰
with KP representation (ϕ, ρ, β) exhibit correlation aversion if and only if ϕ satisfies

1The lottery m⪰ is well defined since preferences are continuous, u(x) = xρ is strictly increasing
and each m ∈ ∆̂(D(b)) has compact support.
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IRRA. Further, if ⪰ admits a KP representation (ϕ, ρ, β) with ϕ ∈ C4 that additionally
satisfies SCA, then ⪰ admits the representation for every (c, m) ∈ C ×

(
∆̂(D(b)) ∩

∆s(D(b))
)

V (c, m) =
[
cρ + β

(
min

ℓ∈∆̂(D(b))

{
EℓV + I(ϕ,u,β)(ℓ∥m)

})ρ]1/ρ

,

where I(ϕ,u,β)(·, ·) : ∆̂(D(b)) × ∆̂(D(b)) → [0, ∞] is a convex statistical distance.

Proof. The proof follows the same steps as the proof of Theorems 1 and 2.

To better understand the previous result, it is helpful to examine its implications.
The following result demonstrates that if preferences satisfy this notion of correlation
aversion, they will always prefer an iid lottery over a perfectly correlated one, where
an iid lottery and a perfectly correlated lottery are straightforward extensions of those
considered in the main text.

Formally, given ℓ ∈ ∆s(C), consider the perfectly correlated lottery (c0, mcorr(ℓ)),
where mcorr ∈ ∆(C∞) satisfies mcorr(c, c, . . .) = ℓ(c) for every c ∈ C, and the iid
lottery (c0, miid(ℓ)), where

miid(ℓ)(c, miid(ℓ)) = ℓ(c) for every c ∈ C.

These lotteries generalize the notions of iid lotteries and perfectly correlated lotteries
from the case T = 2 to the case T = ∞.

Proposition S.1. Consider preferences ⪰ with a KP representation (ϕ, ρ, β) such
that ϕ satisfies IRRA, UPI and ϕ ∈ C3. Then

(c0, miid(ℓ)) ⪰ (c0, mcorr(ℓ)),

for every c0 ∈ C and ℓ ∈ ∆s(C).

Proof. Observe that

(V (c0, mcorr(ℓ)))ρ = cρ
0 + lim

T →∞
βϕ−1

 ∑
c∈suppℓ

ℓ(c)ϕ
(

T −1∑
t=0

βtcρ

)
and (

V
(
c0, miid(ℓ)

))ρ
= lim

T →∞
VT (c0, ℓ) ,
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where V0(c, ℓ) = cρ and, recursively,

Vt(c, ℓ) = cρ + βϕ−1

 ∑
c′∈suppℓ

ℓ(c′)ϕ
(
Vt−1(c′, ℓ)

) for t = 1, . . . , T.

Since the preferences ⪰ satisfy correlation aversion, Theorem S.3 implies that ϕ satis-
fies IRRA. Additionally, by assumption, ϕ satisfies UPI and therefore DARA (Propo-
sition 2). Hence, by Proposition 6 and Theorem 12 in Marinacci and Montrucchio
(2010), the functional (xi)n

i=1 7→ ϕ−1 (∑n
i=1 ϕ (xi) qi) is constant superadditive and

subhomogeneous. Therefore, by repeatedly applying these results, we have that for
every T ≥ 2 it holds

VT (c0, ℓ) − cρ
0 ≥

T −1∑
t=0

βtβϕ−1

 ∑
c∈suppℓ

ℓ(c)ϕ(cρ)
 ≥ βϕ−1

 ∑
c∈suppℓ

ℓ(c)ϕ
(

T −1∑
t=0

βtcρ

) .

Consequently, since
(
V
(
c0, miid(ℓ)

))ρ
= lim

T →∞
VT (c0, ℓ) ≥ lim

T →∞

cρ
0 + βϕ−1

 ∑
c∈suppℓ

ℓ(c)ϕ
(

T −1∑
t=0

βtcρ

) ,

and

lim
T →∞

cρ
0 + βϕ−1

 ∑
c∈suppℓ

ℓ(c)ϕ
(

T −1∑
t=0

βtcρ

) = (V (c0, mcorr(ℓ)))ρ ,

it follows that
(c0, miid(ℓ)) ⪰ (c0, mcorr(ℓ)),

as desired.

S.2 Axiomatic foundation of SCA

Consider again the setting of Section 3. In order to provide an axiomatic foun-
dation of SCA, I introduce the notion of Correlation Aversion Attenuation (CAA)
transformation. This integral operator modifies a given function ϕ to produce a new
function, denoted by CAA(ϕ), which attenuates correlation aversion. Formally, the
CAA transformation is a nonlinear integral operator

CAA : C4 → C3,

defined for every ϕ ∈ C4 by:

CAA(ϕ)(x) =
∫ x

1
exp

(
−
∫ t

1

R′
ϕ(s)
s

ds

)
dt.
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This integral transform attenuates correlation aversion in that it “flattens” the index
of relative risk aversion Rϕ, as I illustrate in the next example.

Example S.1. Given θ ∈ (0, 1) ∪ (1, ∞), let

ϕ(x) = − exp
(

−x

θ

)
.

Relative risk aversion is Rϕ(x) = x
θ
. Applying the CAA operator, we obtain

CAA(ϕ)(x) = x1− 1
θ − 1

1 − 1
θ

.

In this case, relative risk aversion is flat at the level RCAA(ϕ)(x) = 1
θ
. Applying the

CAA operator once again yields:

CAA2(ϕ)(x) = x − 1,

which satisfies RCAA2(ϕ)(x) = 0. Hence, repeated applications of the CAA operator
progressively attenuate correlation aversion by flattening the index of relative risk
aversion. △

Consider preferences ⪰ that admit a KP representation (ϕ, u, β), where ϕ ∈ C4.
Let ⪰CAA denote preferences with the KP representation (CAA(ϕ), u, β).

Definition S.3 (Strong correlation aversion). Preferences ⪰ exhibit strong correlation
aversion if both ⪰ and ⪰CAA exhibit correlation aversion.

Therefore, this notion of strong correlation aversion requires that preferences ex-
hibit correlation aversion even after risk attitudes are adjusted to attenuate correlation
aversion.

Proposition S.2. Assume that CAA(ϕ) satisfies UPI. Every preference relation ⪰
with KP representation (ϕ, u, β) exhibit strong correlation aversion if and only if ϕ

satisfies SCA.

Proof. Straightforward calculations show that

RCAA(ϕ)(x) = R′
ϕ(x).

Therefore since CAA(ϕ) ∈ C3 and CAA(ϕ) satisfies UPI, the result follows by Theo-
rem 1.

This result shows that this behavioral notion of strong correlation aversion is
effectively the behavioral counterpart of SCA.
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S.3 Proof of Lemma 3

Write the support of m1 as {c1, . . . , cN} and pi = m1(ci) for every i = 1, . . . , N . Let
xi = u(ci) for i = 1, . . . , N and

U(ε) =
N∑

i=1
piϕ

xi + βϕ−1

 N∑
j=1

pε
jiϕ(xj)

 for every ε ∈ [0, 1],

where for some
¯
i,

¯
j it holds that pε

¯
j
¯
i = p

¯
j
¯
i − p

¯
i
¯
jε, pε

¯
i
¯
i = p

¯
i
¯
i + p

¯
i
¯
jε, pε

¯
i
¯
j = p

¯
i
¯
j − p

¯
j
¯
iε,

pε

¯
j
¯
j = p

¯
j
¯
j + p

¯
j
¯
iε, and otherwise pji = m2(cj|ci) for every other j, i. Clearly, the

function U defined in this manner is twice continuously differentiable and satisfies
condition (1) of the statement.

To prove point (2), observe that in this case we have that for some p, q ∈ (0, 1),
k ∈ ϕ(u(C)) and x, y ∈ u(C) with x > y

lim
ε→0

U ′(ε) = lim
ε→0

∂

∂ε

[
pϕ
(
x + βϕ−1 (ϕ(x) (p + qε) + ϕ(y) (q − pε) + k)

)
+

qϕ
(
y + βϕ−1 (ϕ(x) (p − qε) + ϕ(y) (q + pε) + k)

) ]

≤ (ϕ(x) − ϕ(y)) lim
ε→0

[
ϕ′(x + βϕ−1 (ϕ(x) (p + qε) + ϕ(y) (q − qε) + k))

ϕ′ (ϕ−1(ϕ(x) (p + qε) + ϕ(y) (q − qε) + k)) −

ϕ′(y + βϕ−1 (ϕ(x) (p − pε) + ϕ(y) (q + pε) + k))
ϕ′ (ϕ−1(ϕ(x) (p − pε) + ϕ(y) (q + pε) + k))

]

= (ϕ(x) − ϕ(y))
[

ϕ′(x + βϕ−1 (ϕ(x)p + ϕ(y)q + k))
ϕ′ (ϕ−1(ϕ(x)p + ϕ(y)q + k)) −

ϕ′(y + βϕ−1 (ϕ(x)p + ϕ(y)q + k))
ϕ′ (ϕ−1(ϕ(x)p + ϕ(y)q + k))

]

= (ϕ(x) − ϕ(y))
ϕ′ (ϕ−1(ϕ(x)p + ϕ(y)q + k))

∫ x

y
ϕ′′
(
z + βϕ−1 (ϕ(x)p + ϕ(y)q + k)

)
dz ≤ 0,

where the last inequality follows by the fact that ϕ is strictly increasing and concave.
Finally, to prove point (3), observe that the functions

g1(ε) := p
¯
iϕ

xi + βϕ−1

 N∑
j=1

pε
j
¯
iϕ(xj)

 ,

and

g2(ε) := p
¯
jϕ

xi + βϕ−1

 N∑
j=1

pε
j
¯
jϕ(xj)

 ,
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are convex by Lemma 1 in the main text. Then we obtain

U ′′(ε) = ∂2

∂ε2

p
¯
iϕ

xi + βϕ−1

 N∑
j=1

pε
j
¯
iϕ(xj)

+ p
¯
jϕ

xi + βϕ−1

 N∑
j=1

pε
j
¯
jϕ(xj)


=g′′

1(ε) + g′′
2(ε) ≥ 0,

for every ε ∈ (0, 1) as desired.
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